[1]张伽伟,姜润翔,肖大为,等.基于静态电位差的船舶跟踪算法[J].哈尔滨工程大学学报,2020,41(6):812-816,831.[doi:10.11990/jheu.201901051]
 ZHANG Jiawei,JIANG Runxing,XIAO Dawei,et al.Ship tracking based on the difference of electric potential[J].hebgcdxxb,2020,41(6):812-816,831.[doi:10.11990/jheu.201901051]
点击复制

基于静态电位差的船舶跟踪算法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年6期
页码:
812-816,831
栏目:
出版日期:
2020-06-05

文章信息/Info

Title:
Ship tracking based on the difference of electric potential
作者:
张伽伟1 姜润翔2 肖大为1 孙宝全3
1. 海军工程大学 兵器工程学院, 湖北 武汉 430033;
2. 海军工程大学 电气工程学院, 湖北 武汉 430033;
3. 中国人民解放军 92941部队44分队, 辽宁 葫芦岛 125000
Author(s):
ZHANG Jiawei1 JIANG Runxing2 XIAO Dawei1 SUN Baoquan3
1. College of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China;
2. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China;
3. Unit of 92941 of PLA, Huludao 125000, China
关键词:
静态电位差静态电位静态电场目标跟踪滤波器组状态空间模型渐进扩展卡尔曼滤波器
分类号:
TJ610
DOI:
10.11990/jheu.201901051
文献标志码:
A
摘要:
为了解决船舶的目标跟踪问题,本文提出了一种基于静态电位差的船舶电场跟踪方法。建立船舶静态电位差跟踪的状态空间模型。引入滤波器组方法解决静态电位差跟踪中先验信息缺失问题,以渐进扩展卡尔曼滤波为基本滤波单元,建立基于船舶静态电位差的观测方程和状态方程,利用最大似然法选择最优跟踪轨迹;引入基于功率谱的静电场检测算法并与跟踪算法相融合,以适应水中兵器的工作实际。仿真结果表明:基于静态电位差的船舶电场跟踪是可行的,且跟踪对方位信息最为敏感。基于静态电位差的船舶电场跟踪相比于静态电位信号和静态电场信号的跟踪对传感器的布设要求低,有利于工程实践。

参考文献/References:

[1] 谭浩, 陈聪, 蒋治国. 船舶水下电场的预测方法[J]. 国防科技大学学报, 2016, 38(6):168-172.TAN Hao, CHEN Cong, JIANG Zhiguo. Electric field prediction method for ships at sea[J]. Journal of National University of Defense Technology, 2016, 38(6):168-172.
[2] 陈聪, 蒋治国, 姚陆锋, 等. 浅海中潜艇腐蚀相关静态电磁信号特征[J]. 海军工程大学学报, 2014, 26(3):1-6.CHEN Cong, JIANG Zhiguo, YAO Lufeng, et al. Characteristic analysis of corrosion-related static electromagnetic field produced by a submarine in shallow sea[J]. Journal of Naval University of Engineering, 2014, 26(3):1-6.
[3] 李松, 石敏, 栾经德, 等. 舰船轴频电场信号特征提取与检测方法[J]. 兵工学报, 2015, 36(S2):220-224.LI Song, SHI Min, LUAN Jingde, et al. The feature extraction and detection for shaft-rate electric field of a ship[J]. Acta armamentarii, 2015, 36(S2):220-224.
[4] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 3版. 西安:西北工业大学出版社, 2015.QIN Yongyuan, ZHANG Hongyue, WANG Shuhua. Kalman filtering and combined navigation principle[M]. 3rd ed. Xian:Northwestern Polytechnical University Press, 2015.
[5] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of basic engineering, 1960, 82(1):35-45.
[6] JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE transactions on automatic control, 2000, 45(3):477-482.
[7] 魏喜庆, 宋申民. 基于容积卡尔曼滤波的卫星姿态估计[J]. 宇航学报, 2013, 34(2):193-200.WEI Xiqing, SONG Shenmin. Cubature Kalman filter-based satellite attitude estimation[J]. Journal of astronautics, 2013, 34(2):193-200.
[8] MAHALANABIS A K, FAROOQ M. A second-order method for state estimation of non-linear dynamical systems[J]. International journal of control, 1971, 14(4):631-639.
[9] 陆珊珊, 王伟, 王国玉. 采用粒子滤波的雷达波束方位指向估计[J]. 国防科技大学学报, 2016(1):74-77.LU Shanshan, WANG Wei, WANG Guoyu. Estimate of radar beam’s azimuth using particle filter[J]. Journal of National University of Defense Technology, 2016(1):74-77.
[10] HO Y, LEE R. A Bayesian approach to problems in stochastic estimation and control[J]. IEEE transactions on automatic control, 1964, 9(4):333-339.
[11] GUSTAFSSON F, HENDEBY G. Some relations between extended and unscented Kalman filters[J]. IEEE transactions on signal processing, 2012, 60(2):545-555.
[12] 刘妹琴, 兰剑. 目标跟踪前沿理论与应用[M]. 北京:科学出版社, 2015.LIU Meiqin, LAN Jian. Advanced theory and application of target tracking[M]. Beijing:Science Press, 2015.
[13] 姜润翔, 胡英娣, 龚沈光. 基于点电源的船舶静态电场深度换算方法研究[J]. 电波科学学报, 2014, 29(4):685-693.JIANG Runxiang, HU Yingdi, GONG Shenguang. Depth conversion of the vessel static electric field based on point charge source[J]. Chinese journal of radio science, 2014, 29(4):685-693.
[14] BIRSAN M. Recursive Bayesian method for magnetic dipole tracking with a tensor gradiometer[J]. IEEE transactions on magnetics, 2011, 47(2):409-415.
[15] DE MELO F E, MASKELL S, FASIOLO M, et al. Stochastic particle flow for nonlinear high-dimensional filtering problems[J]. arXiv:1511.01448v3, 2017.

备注/Memo

备注/Memo:
收稿日期:2019-01-17。
基金项目:国家自然科学基金青年项目(51509252);青岛国家海洋实验室项目(SQ2017WHZZB0202).
作者简介:张伽伟,男,讲师,博士;肖大为,男,讲师,博士.
通讯作者:肖大为,E-mail:xdwmars@163.com.
更新日期/Last Update: 2020-07-22