[1]石翠萍,王立国,那与晶,等.基于自适应采样及平滑投影的分块压缩感知方法[J].哈尔滨工程大学学报,2020,41(6):877-883.[doi:10.11990/jheu.201901115]
 SHI Cuiping,WANG Liguo,NA Yujing,et al.Block compressive sensing method based on adaptive sampling and smooth projection[J].hebgcdxxb,2020,41(6):877-883.[doi:10.11990/jheu.201901115]
点击复制

基于自适应采样及平滑投影的分块压缩感知方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年6期
页码:
877-883
栏目:
出版日期:
2020-06-05

文章信息/Info

Title:
Block compressive sensing method based on adaptive sampling and smooth projection
作者:
石翠萍12 王立国1 那与晶2 黄柏锋3
1. 哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001;
2. 齐齐哈尔大学 通信与电子工程学院, 黑龙江 齐齐哈尔 161006;
3. 中国电信股份有限公司河池分公司, 广西 河池 547000
Author(s):
SHI Cuiping12 WANG Liguo1 NA Yujing2 HUANG Baifeng3
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2. College of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161006, China;
3. China Telecom Co. Hechi branch, Hechi 547000, China
关键词:
自适应采样平滑投影多尺度块压缩感知多尺度重构稀疏性能滤波器重构
分类号:
TP751.1
DOI:
10.11990/jheu.201901115
文献标志码:
A
摘要:
针对传统基于多尺度小波变换压缩感知算法中,将固定码率分配给各子带,从而限制了重构图像质量的问题,本文提出了基于自适应采样及平滑投影的分块压缩感知方法。该方法在图像的空间域和稀疏域中进行相应的多尺度重构,在各分割块的基础上,在空间域使用平滑滤波器进行平滑投影,在稀疏域进行稀疏变换和阈值处理。采用了不同的观测矩阵对各层小波系数进行观测,改善了块效应。通过自适应采样,克服了各子块间采样率相同而限制了稀疏性能的问题。实验结果表明:在不同的采样率下,本文提出的分块压缩感知算法均能得到质量更好的重构图像,且比传统方法的重构速度更快。

参考文献/References:

[1] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE transactions on information theory, 2006, 52(2):489-509.
[2] CANDES E J, TAO T. Near-optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE transactions on information theory, 2006, 52(12):5406-5425.
[3] 沈燕飞, 朱珍民, 张勇东, 等. 基于秩极小化的压缩感知图像恢复算法[J]. 电子学报, 2016, 44(3):572-579. SHEN Yanfei, ZHU Zhenmin, ZHANG Yongdong, et al. Compressed sensing image reconstruction algorithm based on rank minimization[J]. ACTA electronica sinica, 2016, 44(3):572-579.
[4] 刘静, 李小超, 祝开建, 等. 基于分布式压缩感知的遥感图像融合算法[J]. 电子与信息学报, 2017, 39(10):2374-2381. LIU Jing, LI Xiaochao, ZHU Kaijian, et al. Distributed compressed sensing based remote sensing image fusion algorithm[J]. Journal of electronics & information technology, 2017, 39(10):2374-2381.
[5] 蒋沅, 苗生伟, 罗华柱, 等. Lp范数压缩感知图像重建优化算法[J]. 中国图象图形学报, 2017, 22(4):435-442. JIANG Yuan, MIAO Shengwei, LUO Huazhu, et al. Improved search algorithm for compressive sensing image recovery based on Lp norm[J]. Journal of image and graphics, 2017, 22(4):435-442.
[6] 赵春晖, 许云龙, 黄辉, 等. 基于Schmidt正交单位化的稀疏化定位算法[J]. 哈尔滨工程大学学报, 2014, 35(6):747-752, 759. ZHAO Chunhui, XU Yunlong, HUANG Hui, et al. Sparse localization on the basis of Schmidt orthonormalization in wireless sensor networks[J]. Journal of Harbin Engineering University, 2014, 35(6):747-752, 759.
[7] ESLAHI N, AGHAGOLZADEH A. Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization[J]. IEEE transactions on image processing, 2016, 25(7):3126-3140.
[8] MUSI? J, MARASOVI? T, PAPI? V, et al. Performance of compressive sensing image reconstruction for search and rescue[J]. IEEE geoscience and remote sensing letters, 2016, 13(11):1739-1743.
[9] CHEN Zan, HOU Xingsong, QIAN Xueming, et al. Efficient and robust image coding and transmission based on scrambled block compressive sensing[J]. IEEE transactions on multimedia, 2018, 20(7):1610-1621.
[10] GAN Lu. Block compressed sensing of natural images[C]//Proceedings of the 15th International Conference on Digital Signal Processing. Cardiff, UK, 2007:403-406.
[11] MUN S, FOWLER J E. Block compressed sensing of images using directional transforms[C]//Proceedings of the 16th International Conference on Image Processing. Cairo, Egypt, 2009:3021-3024.
[12] CHEN Chen, TRAMEL E W, FOWLER J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]//Proceedings of 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2011:1193-1198.
[13] CANDōS E, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on pure and applied mathematics, 2006, 59(8):1207-1223.
[14] FOWLER J E, MUN S, TRAMEL E W. Multiscale block compressed sensing with smoothed projected landweber reconstruction[C]//Proceedings of the 19th IEEE European Signal Processing Conference. Barcelona, Spain, 2011:564-568.
[15] WANG Anhong, LIU Lei, ZENG Bing, et al. Progressive image coding based on an adaptive block compressed sensing[J]. IEICE electronics express, 2011, 8(8):575-581.
[16] HAUPT J, NOWAK R. Signal reconstruction from noisy random projections[J]. IEEE transactions on information theory, 2016, 52(9):4036-4048.
[17] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J]. IEEE journal of selected topics in signal processing, 2007, 1(4):586-597.

备注/Memo

备注/Memo:
收稿日期:2019-01-31。
基金项目:国家自然科学基金项目(41701479,61675051);中国博士后科学基金项目(2017M621246);黑龙江省博士后科学基金项目(LBH-Z17052);黑龙江省科学基金项目(QC2018045);黑龙江省省属高等学校基本科研业务费科研项目(135309342).
作者简介:石翠萍,女,副教授,博士后;王立国,男,教授,博士生导师.
通讯作者:王立国,E-mail:wangliguo@hrbeu.edu.cn.
更新日期/Last Update: 2020-07-22