[1]吴利红,张爱锋,李一平,等.水下机器人试航速度的类物理数值方法预报[J].哈尔滨工程大学学报,2020,41(2):194-198.[doi:10.11990/jheu.201903073]
 WU Lihong,ZHANG Aifeng,LI Yiping,et al.Prediction of autonomous underwater vehicle cruising velocity using a physics-based numerical method[J].hebgcdxxb,2020,41(2):194-198.[doi:10.11990/jheu.201903073]
点击复制

水下机器人试航速度的类物理数值方法预报(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
194-198
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Prediction of autonomous underwater vehicle cruising velocity using a physics-based numerical method
作者:
吴利红12 张爱锋1 李一平2 封锡盛2 王诗文1
1. 大连海事大学 船舶与海洋工程学院, 辽宁 大连 116026;
2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室, 辽宁 沈阳 110016
Author(s):
WU Lihong12 ZHANG Aifeng1 LI Yiping2 FENG Xisheng2 WANG Shiwen1
1. College of Ship Building and Ocean Engineering, Dalian Maritime University, Dalian 116026, China;
2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
关键词:
自航试验水下机器人动网格类物理数值模拟螺旋桨试航速度计算流体力学操纵性
分类号:
U661.33
DOI:
10.11990/jheu.201903073
文献标志码:
A
摘要:
水下机器人试航速度是评价推进系统性能和续航能力的重要指标。针对水下机器人试航速度预报问题,本文提出类物理数值预报方法,建立水下机器人包含桨舵的全附体模型,采用多块动态混合网格方法进行网格构建和更新,编写用户自定义函数,求解六自由度方程和非定常雷诺平均NS方程进行水下机器人和螺旋桨力和速度的计算和传递,实现以螺旋桨旋转运动推进水下机器人自航的运动过程模拟。数值结果表明:水下机器人试航速度1.5 m/s对应的转速为570 r/min;自航模拟可见螺旋桨梢涡曳出,梢涡强度和螺旋桨推力随航速增加而降低。数值模拟再现了非定常运动过程中船桨舵相互作用机理,有利于水下机器人复杂操纵运动的精确预报。

参考文献/References:

[1] CHASE N, CARRICA P M. Submarine propeller computations and application to self-propulsion of DARPA SUBOFF[J]. Ocean engineering, 2013, 60:68-80.
[2] PANKAJAKSHAN R, REMOTIGUE S, TAYLOR L, et al. Validation of control-surface induced submarine maneuvering simulations using UNCLE[C]//Proceedings of 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan, 2002.
[3] POREMBA III J E. Hydrodynamics and maneuvering simulations of a non-body-of-revolution submarine[D]. PA, USA:The Pennsylvania State University, 2009.
[4] MOFIDI A, CARRICA P M. Simulations of Zigzag maneuvers for a container ship with direct moving rudder and propeller[J]. Computers & fluids, 2014, 96:191-203.
[5] CARRICA P M, HOSSEINI H S, STERN F. CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers[J]. Computers & fluids, 2012, 53:117-132.
[6] 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海:上海交通大学, 2014:133-162.SHEN Zhirong. Development of overset grid technique for hull-propeller-rudder interactions[D]. Shanghai:Shanghai Jiao Tong University, 2014:133-162.
[7] 于军, 聂义勇. 不可压缩流场多体运动问题的两种数值解法[J]. 计算力学学报, 2006, 23(5):583-587.YU Jun, NIE Yiyong. Two numerical methods of multi-body movement in incompressible fluid[J]. Chinese journal of computational mechanics, 2006, 23(5):583-587.
[8] FURQUAN M, NAVROSE, MITTAL S. A fast mesh moving scheme for flow-induced vibrations of rigid bodies[J]. Computers & fluids, 2016, 141:116-123.
[9] MURAYAMA M, TOGASHI F, NAKAHASHI K, et al. Simulation of aircraft response to control surface deflection using unstructured dynamic grids[C]//20th AIAA Applied Aerodynamics Conference. Louis, Missouri, 2002.
[10] WU Lihong, LI Yiping, SU Shaojuan, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean engineering, 2014, 85:110-126.
[11] ZHAN Jiemin, CAI Wenhao, HU Wenqing, et al. Numerical study on the six-DOF anchoring process of gravity anchor using a new mesh update strategy[J]. Marine structures, 2017, 52:173-187.
[12] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4):424-447.ZHANG Laiping, DENG Xiaogang, ZHANG Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in mechanics, 2010, 40(4):424-447.
[13] ALLEN B, AUSTIN T, FORRESTER N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]//OCEANS 2006. Boston, MA, USA, 2006.
[14] 吴利红, 李一平, 刘开周, 等. 基于多块动态混合网格的AUV自航类物理数值模拟[J/OL]. 机器人:(2019-05-10) https://doi.org/10.13973/j.cnki.robot.180683.DOI:10.13973/j.cnki.robot.180683.WU Lihong, LI Yiping, LIU Kaizhou, et al. Physics-based numerical simulation of AUV self-propulsion using multi-block hybrid dynamic mesh method[J/OL]. Robot:(2019-05-10). https://doi.org/10.13973/j.cnki.robot.180683.DOI:10.13973/j.cnki.robot.180683.
[15] WEI Yingsan, WANG Yongsheng. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller’s thrust and side-forces[J]. Journal of sound and vibration, 2013, 332(8):2038-2056.

相似文献/References:

[1]郭冰洁,徐玉如,李岳明.水下机器人S面控制器的改进粒子群优化[J].哈尔滨工程大学学报,2008,(12):1277.
 GUO Bing-jie,Xu Yu-ru,LI Yue-ming.S surface controller for underwater vehicles using particle swarm optimization[J].hebgcdxxb,2008,(2):1277.
[2]毛宇峰,庞永杰,李 晔,等.速度矢量坐标系下水下机器人动态避障方法[J].哈尔滨工程大学学报,2010,(02):159.
 MAO Yu feng,PANG Yong jie,LI Ye,et al.Using a velocity vector coordinate method for dynamic obstacle avoidance of autonomous underwater vehicles[J].hebgcdxxb,2010,(2):159.
[3]张铭钧,宋炜胥,褚振忠.自主式水下机器人模糊定性建模方法研究[J].哈尔滨工程大学学报,2013,(01):116.[doi:10.3969/j.issn.1006-7043. 201205069]
 ZHANG Mingjun,SONG Weixu,CHU Zhenzhong.Research on the method of fuzzy qualitative modeling for AUV[J].hebgcdxxb,2013,(2):116.[doi:10.3969/j.issn.1006-7043. 201205069]
[4]黄海,张强,张树迪,等.欠驱动AUV自适应编队控制策略[J].哈尔滨工程大学学报,2015,(05):633.[doi:10.3969/j.issn.1006-7043.201402003]
 HUANG Hai,ZHANG Qiang,ZHANG Shudi,et al.Adaptive formation control strategy for under-actuated AUVs[J].hebgcdxxb,2015,(2):633.[doi:10.3969/j.issn.1006-7043.201402003]
[5]赵文德,张杰,赵勇,等.大深度海水浮力调节系统研制[J].哈尔滨工程大学学报,2015,(09):1269.[doi:10.11990/jheu.201407040]
 ZHAO Wende,ZHANG Jie,ZHAO Yong,et al.Development of a deep-sea buoyancy regulating system[J].hebgcdxxb,2015,(2):1269.[doi:10.11990/jheu.201407040]
[6]张荣敏,陈原,高军.无鳍舵矢量推进水下机器人纵向稳定性研究[J].哈尔滨工程大学学报,2017,38(01):133.[doi:10.11990/jheu.201509089]
 ZHANG Rongmin,CHEN Yuan,GAO Jun.Longitudinal handling stability of vectored thrust underwater vehicle without fin and rudder[J].hebgcdxxb,2017,38(2):133.[doi:10.11990/jheu.201509089]
[7]李新飞,马强,袁利毫,等.矢量推进水下机器人的推力分配方法[J].哈尔滨工程大学学报,2018,39(10):1605.[doi:10.11990/jheu.201702042]
 LI Xinfei,MA Qiang,YUAN Lihao,et al.Thrust allocation method of underwater robots with vector propulsion[J].hebgcdxxb,2018,39(2):1605.[doi:10.11990/jheu.201702042]
[8]姚峰,杨超,张铭钧,等.水下机器人-机械手末端精度测量方法及误差分析[J].哈尔滨工程大学学报,2019,40(06):1155.[doi:10.11990/jheu.201805034]
 YAO Feng,YANG Chao,ZHANG Mingjun,et al.End-precision measurement method for autonomous underwater vehicle manipulator systems and its principle error analysis[J].hebgcdxxb,2019,40(2):1155.[doi:10.11990/jheu.201805034]

备注/Memo

备注/Memo:
收稿日期:2019-03-22。
基金项目:国家重点研发计划(2017YFC0305901);国家自然科学基金项目(51009016);机器人学国家重点实验室开放课题(2016-O04);中央高校基本科研业务费专项资金(3132017030).
作者简介:吴利红,女,副教授;张爱锋,女,副教授;封锡盛,男,教授,博士生导师,中国工程院院士.
通讯作者:张爱锋,E-mail:afzhang@dlmu.edu.cn.
更新日期/Last Update: 2020-03-24