[1]谌赫,邹广平.静态渐近解在动态断裂问题中的适用性分析[J].哈尔滨工程大学学报,2020,41(6):824-831.[doi:10.11990/jheu.201903081]
 CHEN He,ZOU Guangping.Discussion on the applicability of static asymptotic solutions in dynamic fracture[J].hebgcdxxb,2020,41(6):824-831.[doi:10.11990/jheu.201903081]
点击复制

静态渐近解在动态断裂问题中的适用性分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年6期
页码:
824-831
栏目:
出版日期:
2020-06-05

文章信息/Info

Title:
Discussion on the applicability of static asymptotic solutions in dynamic fracture
作者:
谌赫 邹广平
哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001
Author(s):
CHEN He ZOU Guangping
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
动态断裂静态渐近解动态应力强度因子应变片法数值模拟渐近解紧凑拉伸剪切试样
分类号:
O347.3
DOI:
10.11990/jheu.201903081
文献标志码:
A
摘要:
应变片法等动态应力强度因子的测试方法多数基于应变场的静态渐近解,而渐近解在动态断裂问题中的应用存在局限性。本文对Hopkinson拉杆加载改进的紧凑拉伸剪切试样进行数值模拟,分析裂尖应变场数值解与渐近解的差异,指出应变片法求解动态应力强度因子的合适位置。结果表明:应变分量的数值解只在特定区域内与渐近解较好地符合,而在其他区域二者差异较大。在此区域内,基于渐近解求解动态应力强度因子所带来的误差与应变分量的误差在同一量级。对于不同的载荷工况,渐近解的适用区域不同,因此不能盲目地应用静态渐近解求解动态断裂问题,需要针对具体问题具体分析。

参考文献/References:

[1] ANDERSON T L. Fracture mechanics-fundamentals and applications[M]. Boca Raton:CRC Press, 1991:3-21.
[2] 李玉龙, 刘元镛. 用弹簧质量模型求解三点弯曲试样的动态应力强度因子[J]. 固体力学学报, 1994, 15(1):75-79.LI Yulong, LIU Yuanyong. Determination of dynamic stress intensity of specimen of three points bending by spring-mass model[J]. Acta mechanica solida sinica, 1994, 15(1):75-79.
[3] JIANG Fengchun, ROHATGI A, VECCHIO K S, et al. Analysis of the dynamic responses for a pre-cracked three-point bend specimen[J]. International journal of fracture, 2004, 127(1):147-165.
[4] 李清, 于强, 徐文龙, 等. 应变片法确定Ⅰ型裂纹动态应力强度因子试验研究[J]. 岩土力学, 2018, 39(4):1211-1218.LI Qing, YU Qiang, XU Wenlong, et al. Experimental research on determination of dynamic stress intensity factor of type-I crack using strain gage method[J]. Rock and soil mechanics, 2018, 39(4):1211-1218.
[5] 卢芳云. 霍普金森杆实验技术[M]. 北京:科学出版社, 2013:1-10.LU Fangyun. Hopkinson bar techniques[M]. Beijing:Science Press, 2013:1-10.
[6] JIANG Fengchun, VECCHIO K S. Experimental investigation of dynamic effects in a two-bar/three-point bend fracture test[J]. Review of scientific instruments, 2007, 78(6):063903.
[7] 崔新忠, 范亚夫, 陈捷. 685均质钢静动态断裂韧性实验研究[J]. 实验力学, 2012, 27(3):326-334.CUI Xinzhong, FAN Yafu, CHEN Jie. Experimental research of quasi-static and dynamic fracture toughness of 685 homogeneous steel[J]. Journal of experimental mechanics, 2012, 27(3):326-334.
[8] 邹广平, 汪艳伟, 唱忠良, 等. 基于数字散斑相关法的紧凑拉伸试样断裂韧性实验研究[J]. 实验力学, 2015, 30(3):275-281.ZOU Guangping, WANG Yanwei, CHANG Zhongliang, et al. Experimental study of compact tension specimen fracture toughness based on digital speckle correlation method[J]. Journal of experimental mechanics, 2015, 30(3):275-281.
[9] XING Haozhe, ZHANG Qianbing, RUAN Dong, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation[J]. International journal of impact engineering, 2018, 113:61-72.
[10] DALLY J W, SANFORD R J. Strain-gage methods for measuring the opening-mode stress-intensity factor, KI[J]. Experimental mechanics, 1987, 27(4):381-388.
[11] 樊鸿, 张盛, 王启智. 用应变片法确定混凝土动态起裂时间的研究[J]. 振动与冲击, 2010, 29(1):153-156.FAN Hong, ZHANG Sheng, WANG Qizhi. Determining dynamic fracture initiation time for concrete with strain gauge method[J]. Journal of vibration and shock, 2010, 29(1):153-156.
[12] XU Zejian, LI Yulong. A novel method in determination of dynamic fracture toughness under mixed mode I/II impact loading[J]. International journal of solids and structures, 2012, 49(2):366-376.
[13] ZHU Shifan, CAO Yang, GUO Chunhuan, et al. An experimental-numerical hybrid method to determine dynamic elastic-plastic fracture toughness[J]. Key engineering materials, 2013, 577-578:517-520.
[14] JIANG Fengchun, VECCHIO K S. Hopkinson bar loaded fracture experimental technique:a critical review of dynamic fracture toughness tests[J]. Applied mechanics reviews, 2009, 62(6):060802.
[15] 范天佑. 断裂动力学原理与应用[M]. 北京:北京理工大学出版社, 2006:1-19.FAN Tianyou. The principles and applications of fracture kinetics[M]. Beijing:Beijing Institute of Technology Press, 2006:1-19.
[16] RAVI-CHANDAR K. Dynamic fracture[M]. Austin, USA:Elsevier Science, 2004:27-47.
[17] 邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术[J]. 力学学报, 2017, 49(1):117-125.ZOU Guangping, CHEN He, CHANG Zhongliang. A modified mode II dynamic fracture test technique based on SHTB[J]. Chinese journal of theoretical and applied mechanics, 2017, 49(1):117-125.
[18] SUN C T, JIN Z H. Fracture mechanics[M]. Waltham:Academic Press, 2012:35-61.
[19] 沈昕慧. 应力波加载下材料动态断裂韧性相关实验技术研究[D]. 哈尔滨:哈尔滨工程大学, 2016.SHEN Xinhui. Investigation on dynamic fracture toughness experimental technique under stress wave load[D]. Harbin:Harbin Engineering University, 2016.
[20] 解德, 钱勤, 李长安. 断裂力学中的数值计算方法及工程应用[M]. 北京:科学出版社, 2009:1-35.XIE De, QIAN Qin, LI Chang’an. Numerical methods and engineering application in fracture mechanics[M]. Beijing:Science Press, 2009:1-35.
[21] RITTEL D. A hybrid experimental-numerical investigation of dynamic shear fracture[J]. Engineering fracture mechanics, 2005, 72(1):73-89.

备注/Memo

备注/Memo:
收稿日期:2019-03-26。
基金项目:黑龙江省科学基金项目(A2017002).
作者简介:谌赫,男,博士研究生;邹广平,男,教授,博士生导师.
通讯作者:邹广平,E-mail:lxsy@hrbeu.edu.cn.
更新日期/Last Update: 2020-07-22