[1]陈龙,张峰峰,于凌涛,等.归一化互信息与多分辨率融合的2D-3D配准方法[J].哈尔滨工程大学学报,2020,41(2):243-249.[doi:10.11990/jheu.201904084]
 CHEN Long,ZHANG Fengfeng,YU Lingtao,et al.A 2D-3D registration method based on normalized mutual information and multi-resolution fusion[J].hebgcdxxb,2020,41(2):243-249.[doi:10.11990/jheu.201904084]
点击复制

归一化互信息与多分辨率融合的2D-3D配准方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
243-249
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
A 2D-3D registration method based on normalized mutual information and multi-resolution fusion
作者:
陈龙1 张峰峰12 于凌涛3 孙立宁12 干旻峰4 詹蔚4
1. 苏州大学 机电工程学院, 江苏 苏州 215006;
2. 苏州大学 苏州纳米科技协同创新中心, 江苏 苏州 215123;
3. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001;
4. 苏州大学 附属第一医院, 江苏 苏州 215000
Author(s):
CHEN Long1 ZHANG Fengfeng12 YU Lingtao3 SUN Lining12 GAN Minfeng4 ZHAN Wei4
1. School of Mechanical and Electric Engineering, Soochow University, Suzhou 215006, China;
2. Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China;
3. School of Mechanical and Electric Engineering, Harbin Engineering University, Harbin 150001, China;
4. The First Affiliated Hospital of Soochow University, Suzhou 215000, China
关键词:
2D-3D配准归一化互信息多分辨率相似性测度光线投射插值区域分割微创灰度
分类号:
TP391
DOI:
10.11990/jheu.201904084
文献标志码:
A
摘要:
针对微创脊柱手术配准环节中存在的配准精度和效率低的问题,本文提出了一种2D-3D配准方法。采用基于区域贡献的归一化互信息与多分辨率策略相结合的方法,并通过改变配准步长,研究配准精度和时间。整体配准精度提高了40%,配准时间缩短了53%,当配准步长由0.1降到0.05时,其配准精度提高了8%,配准时间增加了12%。由此可知,配准步长变小时,配准精度相对提高,但配准时间增加。此算法可以实现三维与二维图像的配准,且可以有效提高配准精度和配准效率,基本符合医生手术过程图像配准3 mm以内的需要。

参考文献/References:

[1] 宋国立, 韩建达, 赵忆文. 骨科手术机器人及其导航技术[J]. 科学通报, 2013, 58(S2):8-19.SONG Guoli, HAN Jianda, ZHAO Yiwen. Review of orthopedic surgery robot and navigation technology[J]. Chinese science bulletin, 2013, 58(S2):8-19.
[2] GUAN Shaoya, WANG Tianmiao, MENG Cai, et al. A review of point feature based medical image registration[J]. Chinese journal of mechanical engineering, 2018, 31:76.
[3] DANG H, OTAKE Y, SCHAFER S, et al. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance[J]. Medical physics, 2012, 39(10):6484-6498.
[4] SELMI S Y, PROMAYON E, TROCCAZ J. Hybrid 2D-3D ultrasound registration for navigated prostate biopsy[J]. International journal of computer assisted radiology and surgery, 2018, 13(7):987-995.
[5] 王雷, 高欣, 崔学理, 等. 基于灰度距离融合的2D/3D刚性配准[J]. 光学精密工程, 2014, 22(10):2815-2824.WANG Lei, GAO Xin, CUI Xueli, et al. 2D/3D rigid registration by integrating intensity distance[J]. Optics and precision engineering, 2014, 22(10):2815-2824.
[6] WU Jian, KIM M, PETER J, et al. Evaluation of similarity measures for use in the intensity-based rigid 2D-3D registration for patient positioning in radiotherapy[J]. Medical physics, 2009, 36(12):5391-5403.
[7] MARKELJ P, TOMA?EVI? D, LIKAR B, et al. A review of 3D/2D registration methods for image-guided interventions[J]. Medical image analysis, 2012, 16(3):642-661.
[8] AUDRITO G, DAMIANI F, VIROLI M. Optimal single-path information propagation in gradient-based algorithms[J]. Science of computer programming, 2018, 166:146-166.
[9] 张薇, 黄毓瑜, 栾胜, 等. 基于灰度的二维/三维图像配准方法及其在骨科导航手术中的实现[J]. 中国医学影像技术, 2007, 23(7):1080-1084.ZHANG Wei, HUANG Yuyu, LUAN Sheng, et al. Implementation of intensity-based 2D/3D image registration in orthopaedic navigation system[J]. Chinese journal of medical imaging technology, 2007, 23(7):1080-1084.
[10] 张翼, 王满宁, 宋志坚. 脊柱手术导航中分步式2D/3D图像配准方法[J]. 计算机辅助设计与图形学学报, 2007, 19(9):1154-1158, 1165.ZHANG Yi, WANG Manning, SONG Zhijian. Multi-Step 2D/3D image registration in image-guided spine surgery[J]. Journal of computer-aided design & computer graphics, 2007, 19(9):1154-1158, 1165.
[11] 刘坤, 吕晓琪, 谷宇, 等. 快速数字影像重建的2维/3维医学图像配准[J]. 中国图象图形学报, 2016, 21(1):69-77.LIU Kun, LV Xiaoqi, GU Yu, et al. The 2D/3D medical image registration algorithm based on rapid digital image reconstruction[J]. Journal of image and graphics, 2016, 21(1):69-77.
[12] 刘达, 谢永召, 倪自强, 等. 基于局部方差采样的2D/3D医学图像配准技术[J]. 高技术通讯, 2013, 23(8):827-832.LIU Da, XIE Yongzhao, NI Ziqiang, et al. 2D/3D medical image registration based on local variance sampling[J]. Chinese high technology letters, 2013, 23(8):827-832.
[13] MAES F, COLLIGNON A, VANDERMEULEN D, et al. Multimodality image registration by maximization of mutual information[J]. IEEE transactions on medical imaging, 1997, 16(2):187-198.
[14] KNOPS Z F, MAINTZ J B A, VIERGEVER M A, et al. Normalized mutual information based registration using k-means clustering and shading correction[J]. Medical image analysis, 2006, 10(3):432-439.
[15] LI Guohe, GAO Jiaying, KAFKA O L, et al. Implementation and application of the multiresolution continuum theory[J]. Computational mechanics, 2019, 63(4):631-647.
[16] KURTZ C, STUMPF A, MALET J P, et al. Hierarchical extraction of landslides from multiresolution remotely sensed optical images[J]. Isprs journal of photogrammetry and remote sensing, 2014, 87:122-136.

备注/Memo

备注/Memo:
收稿日期:2019-05-30。
基金项目:国家重点研发计划资助(2018YFB1307700).
作者简介:张峰峰,男,副教授;孙立宁,男,教授,长江学者特聘教授.
通讯作者:张峰峰,E-mail:zhangfengfeng@suda.edu.cn.
更新日期/Last Update: 2020-03-24