[1]孙大军,马超,梅继丹,等.反卷积波束形成技术在水声阵列中的应用[J].哈尔滨工程大学学报,2020,41(6):860-869.[doi:10.11990/jheu.201905013]
 SUN Dajun,MA Chao,MEI Jidan,et al.Application of deconvolved beamforming technology in underwater acoustic array signal processing[J].hebgcdxxb,2020,41(6):860-869.[doi:10.11990/jheu.201905013]
点击复制

反卷积波束形成技术在水声阵列中的应用(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年6期
页码:
860-869
栏目:
出版日期:
2020-06-05

文章信息/Info

Title:
Application of deconvolved beamforming technology in underwater acoustic array signal processing
作者:
孙大军123 马超123 梅继丹123 杨宛珊123 魏秋雨123
1. 哈尔滨工程大学 水声技术重点实验室, 黑龙江 哈尔滨 150001;
2. 海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部, 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 水声工程学院, 黑龙江 哈尔滨 150001
Author(s):
SUN Dajun123 MA Chao123 MEI Jidan123 YANG Wanshan123 WEI Qiuyu123
1. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology;Harbin 150001, China;
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
反卷积波束形成基阵方向图点扩散函数移变模型移不变模型水声信号处理高分辨
分类号:
TB566
DOI:
10.11990/jheu.201905013
文献标志码:
A
摘要:
反卷积波束形成技术是一种可以同时获得窄波束和低旁瓣效果的稳健高分辨波束形成方法,其在等间距声压线阵、矢量阵和圆阵中的应用效果已经得到验证,表现出了稳健的高分辨处理性能。为了将该技术更好地运用到水声阵处理中,本文对多种水下常用阵列形式的波束形成卷积模型进行了分析推导,将其按照卷积模型类型进行了分类综述,并将其划分为波束图(也可以被称作阵列的点扩散函数)移变阵列和波束图移不变阵列。总结了移不变和移变模型阵列的反卷积波束形成典型求解方法,并给出仿真结果。结果表明:圆阵、均匀声压线列阵、非均匀声压线列阵均是一维移不变阵列,平面阵是二维移不变阵列,矢量阵和共形阵是移变阵列。

参考文献/References:

[1] KAY S M, MARPLE S L. Spectrum analysis-A modern perspective[J]. Proceedings of the IEEE, 1981, 69(11):1380-1419.
[2] BURG J P. Maximum entropy spectral analysis[J]. Journal of China institute of communications, 1975, 17(4):1519-1533.
[3] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8):1408-1418.
[4] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE transactions on antennas and propagation, 1986, 34(3):276-280.
[5] KUNG S Y, ARUN K S, RAO D V B. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem[J]. Journal of the optical society of America, 1983, 73(12):1799-1811.
[6] CARLSON B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE transactions on aerospace and electronic systems, 1988, 24(4):397-401.
[7] COX H, ZESKIND R, OWEN M. Robust adaptive beamforming[J]. IEEE transactions on acoustics, speech, and signal processing, 1987, 35(10):1365-1376.
[8] FELDMAN D D, GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE transactions on signal processing, 1994, 42(4):867-876.
[9] ELDAR Y, LUO Zhiquan, MA Ken, et al. Convex optimization in signal processing[J]. IEEE signal processing magazine, 2010, 27(3):19-145.
[10] XENAKI A, GERSTOFT P, MOSEGAARD K. Compressive beamforming[J]. The journal of the acoustical society of America, 2014, 136(1):260-271.
[11] YANG T C. Deconvolved conventional beamforming for a horizontal line array[J]. IEEE journal of oceanic engineering, 2018, 43(1):160-172.
[12] YANG T C. Performance analysis of superdirectivity of circular arrays and implications for sonar systems[J]. IEEE journal of oceanic engineering, 2019, 44(1):156-166.
[13] SUN Dajun, MA Chao, YANG T C, et al. Improving the performance of a vector sensor line array by deconvolution[J]. IEEE journal of oceanic engineering, DOI:10.1109/JOE.2019.2912586.
[14] 孙大军, 马超, 梅继丹, 等. 基于非负最小二乘的矢量阵反卷积波束形成方法[J]. 哈尔滨工程大学学报, 2019, 40(7):1217-1223.SUN Dajun, MA Chao, MEI Jidan, et al. Deconvolved conventional beamforming of a vector-sensor array based on non-negative least squares[J]. Journal of Harbin Engineering University, 2019, 40(7):1217-1223.
[15] DOUGHERTY R, STOKER R. Sidelobe suppression for phased array aeroacoustic measurements[C]//Proceedings of the 4th AIAA/CEAS Aeroacoustics Conference. Toulouse, France, 1998.
[16] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of sound and vibration, 2006, 294(4/5):856-879.
[17] EHRENFRIED K, KOOP L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources[J]. AIAA journal, 2007, 45(7):1584-1595.
[18] RICHARDSON W H. Bayesian-based iterative method of image restoration[J]. Journal of the optical society of America, 1972, 62(1):55-59.
[19] LUCY L B. An iterative technique for the rectification of observed distributions[J]. Astronomical journal, 1974, 79(6):745-754.
[20] DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]//Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference. Monterey, California, 2005.
[21] YARDIBI T, LI J, STOICA P, et al. Sparsity constrained deconvolution approaches for acoustic source mapping[J]. Journal of the acoustical society of America, 2008, 123(5):2631-2642.
[22] MA Wei, LIU Xun. Improving the efficiency of DAMAS for sound source localization via wavelet compression computational grid[J]. Journal of sound and vibration, 2017, 395:341-353.
[23] CHU Zhigang, YANG Yang, HE Yansong. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming[J]. Journal of sound and vibration, 2015, 344:484-502.
[24] COMESANA D F, FERNANDEZ-GRANDE E, TIANA-ROIG E, et al. A novel deconvolution beamforming algorithm for virtual phased arrays[C]//Proceedings of Internoise 2013. Austria, 2013.

相似文献/References:

[1]孙大军,马超,梅继丹,等.基于非负最小二乘的矢量阵反卷积波束形成方法[J].哈尔滨工程大学学报,2019,40(07):1217.[doi:10.11990/jheu.201811059]
 SUN Dajun,MA Chao,MEI Jidan,et al.Deconvolved conventional beamforming of a vector-sensor array based on non-negative least squares[J].hebgcdxxb,2019,40(6):1217.[doi:10.11990/jheu.201811059]

备注/Memo

备注/Memo:
收稿日期:2019-05-06。
基金项目:国家自然学科基金项目(61531012,61801140,51609052).
作者简介:孙大军,男,教授,博士生导师,"长江学者"特聘教授;梅继丹,女,副研究员.
通讯作者:梅继丹,E-mail:meijidan@hrbeu.edu.cn.
更新日期/Last Update: 2020-07-22