[1]刘冰,殷敬伟,朱广平,等.基于随机算法的抗混响目标探测方法[J].哈尔滨工程大学学报,2020,41(2):277-281.[doi:10.11990/jheu.201905039]
 LIU Bing,YIN Jingwei,ZHU Guangping,et al.A target detection method in reverberation environment based on stochastic algorithm[J].hebgcdxxb,2020,41(2):277-281.[doi:10.11990/jheu.201905039]
点击复制

基于随机算法的抗混响目标探测方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
277-281
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
A target detection method in reverberation environment based on stochastic algorithm
作者:
刘冰123 殷敬伟123 朱广平123 郭龙祥123
1. 哈尔滨工程的大学 水声技术重点实验室, 黑龙江 哈尔滨 150001;
2. 海洋信息获取与安全工业和信息化部重点实验室(哈尔滨工程大学), 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 水声工程学院, 黑龙江 哈尔滨 150001
Author(s):
LIU Bing123 YIN Jingwei123 ZHU Guangping123 GUO Longxiang123
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
运动目标主动探测目标探测混响随机算法低秩低秩结构低秩矩阵
分类号:
O427.9
DOI:
10.11990/jheu.201905039
文献标志码:
A
摘要:
为了解决在强混响环境下探测移动目标的问题,本文提出了一种探测方法。该方法利用了多帧数据之间的关联特性,使用随机算法对多帧数据进行线性测量,通过双边投影的方式提取了多帧数据的低秩结构从而抑制了混响,最终实现了对移动目标的探测。数值仿真和实验的结果表明该方法能在强混响的环境下准确地探测到移动目标。与传统方法相比,该方法优势明显,非常适合港口监测等混响环境严重的应用场景。

参考文献/References:

[1] 杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5):369-387.YANG Yixin, HAN Yi’na, ZHAO Ruiqin, et al. Ocean acoustic target detection technologies:a review[J]. Journal of unmanned undersea systems, 2018, 26(5):369-387.
[2] 张杨梅. 水下小目标主动探测关键技术研究[D]. 西安:西北工业大学, 2017.ZHANG Yangmei. Research on the key technologies of active detection of underwater small target[D]. Xi’an:Northwestern Polytechnical University, 2017.
[3] 李晖宙, 刘正红, 毛盾. 基于蛙人探测声纳序列图像的水下小目标跟踪算法[J]. 舰船电子工程, 2018, 38(2):26-30, 34.LI Huizhou, LIU Zhenghong, MAO Dun. Underwater small target tracking algorithm based on diver detection sonar image sequences[J]. Ship electronic engineering, 2018, 38(2):26-30, 34.
[4] KAY S, SALISBURY J. Improved active sonar detection using autoregressive prewhiteners[J]. The journal of the acoustical society of America, 1990, 87(4):1603-1611.
[5] TRUCCO A, DI SERIO S, MURINO V. Buried object detection by auto-regressive pre-whitening[C]//Proceedings of MTS/IEEE Riding the Crest into the 21st Century. Seattle, WA, USA, 1999:126-132.
[6] BESBES H, JEBARA S B. The pre-whitened NLMS:a promising algorithm for acoustic echo cancellation[C]//Proceedings of the 9th International Conference on Electronics, Circuits and Systems. Dubrovnik, Croatia, 2002:875-878.
[7] BESBES H, JEBARA S B. A variable step size pre-whitened sign algorithm with quantized normalizing factor. Application to acoustic echo cancellation[C]//Proceedings of the 2004 12th European Signal Processing Conference. Vienna, Austria, 2004:709-712.
[8] SHUI Penglang, LIU Hongwei, BAO Zheng. Range-spread target detection based on cross time-frequency distribution features of two adjacent received signals[J]. IEEE transactions on signal processing, 2009, 57(10):3733-3745.
[9] XIA Yunlong, PIAO Shengchun, FU Yongqing. Combination of WVD with TRM on detection of LFM signal in inhomogeneous medium[C]//Proceedings of the 2009 4th IEEE Conference on Industrial Electronics and Applications. Xi’an, China, 2009:3864-3867.
[10] YU Ge, PIAO Shengchun, HAN Xiao. Fractional Fourier transform-based detection and delay time estimation of moving target in strong reverberation environment[J]. IET radar, sonar & navigation, 2017, 11(9):1367-1372.
[11] WOOLFE F, LIBERTY E, ROKHLIN V, et al. A fast randomized algorithm for the approximation of matrices[J]. Applied and computational harmonic analysis, 2008, 25(3):335-366.
[12] FAZEL M, CANDES E, RECHT B, et al. Compressed sensing and robust recovery of low rank matrices[C]//Proceedings of the 2008 42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2008:1043-1047.
[13] ZHOU Tianyi, TAO Dacheng. GoDec:Randomized low-rank & sparse matrix decomposition in noisy case[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, WA, USA, 2011.

相似文献/References:

[1]王兴梅,印桂生,门志国,等.基于MRF的动态场景中运动目标提取方法研究[J].哈尔滨工程大学学报,2011,(08):1029.[doi:doi:10.3969/j.issn.1006-7043.2011.08.012]
 WANG Xingmei,YIN Guisheng,MEN Zhiguo,et al.Research on the extraction algorithm for a moving target in a dynamic scene based on Markov random fields (MRF)[J].hebgcdxxb,2011,(2):1029.[doi:doi:10.3969/j.issn.1006-7043.2011.08.012]
[2]肖东,江驹,周俊,等.通信受限下多无人机协同运动目标搜索[J].哈尔滨工程大学学报,2018,39(11):1823.[doi:10.11990/jheu.201705047]
 XIAO Dong,JIANG Ju,ZHOU Jun,et al.Multi-UAV cooperation search for moving targets under limited communication[J].hebgcdxxb,2018,39(2):1823.[doi:10.11990/jheu.201705047]

备注/Memo

备注/Memo:
收稿日期:2019-05-10。
基金项目:国家重点研发计划(2018YFC1405900);国家自然科学基金项目(51779061);霍英东教育基金项目(151007);黑龙江省杰出青年科学基金项目(JC2017017);国防科技创新特区项目.
作者简介:刘冰,男,博士研究生;殷敬伟,男,教授,博士生导师,"长江学者奖励计划"青年学者;朱广平,男,副教授.
通讯作者:朱广平,guangpingzhu@hrbeu.edu.cn.
更新日期/Last Update: 2020-03-24