[1]姚建均,李凤甡,陈俊华,等.垂直轴阻力型Savonius水轮机发展现状[J].哈尔滨工程大学学报,2020,41(2):298-308.[doi:10.11990/jheu.201905056]
 YAO Jianjun,LI Fengshen,CHEN Junhua,et al.Research on a vertical-axis drag-type Savonius hydrokinetic turbine[J].hebgcdxxb,2020,41(2):298-308.[doi:10.11990/jheu.201905056]
点击复制

垂直轴阻力型Savonius水轮机发展现状(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
298-308
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Research on a vertical-axis drag-type Savonius hydrokinetic turbine
作者:
姚建均1 李凤甡1 陈俊华2 苏振兴1 余洁1
1. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001;
2. 浙江大学宁波理工学院 机能学院, 浙江 宁波 315100
Author(s):
YAO Jianjun1 LI Fengshen1 CHEN Junhua2 SU Zhenxing1 YU Jie1
1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
2. College of Mechanical and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
关键词:
Savnoius型水轮机阻力型研究方法优化基本参数辅助机构功率系数叶尖速比
分类号:
TK737
DOI:
10.11990/jheu.201905056
文献标志码:
A
摘要:
为了改善化石能源日益枯竭及其造成环境恶化的问题,Savonius型垂直轴水轮机作为一种洁净新能源发电装置得到广泛关注。结合国内外S型水轮机发展历程和现状,从介绍水轮机性能分析方法入手,对S型水轮机的基本参数和辅助机构进行分类和归纳,再解释并评述了不同条件下的性能影响机理和优缺点,并分析了参数和结构优化技术特点。指出通过改善S型水轮机的基本参数和增加辅助机构可有效提高水轮机的发电效率和稳定性,并对现阶段面临的问题以及未来的发展趋势进行总结和预测,旨在为提高S型水轮机发电效率的研究员和工程设计者提供参考。

参考文献/References:

[1] 胡敏. 《能源发展战略行动计划(2014-2020年)》正式发布[J]. 炼油技术与工程, 2015, 45(1):42.HU Min. Energy Development Strategic Action Plan (2014-2020) was officially released[J]. Refining and technical engineering, 2015, 45(1):42.
[2] 夏登文, 康健. 海洋能开发利用词典[M]. 北京:海洋出版社, 2014:150-163.XIA Dengwen, KANG Jian. Dictionary of ocean energy[M]. Beijing:Ocean Press, 2014:150-163.
[3] Gerald L Wick, Walter R Schmitt. Harvesting ocean energy[M]. United Nations Educational:Scientific and Cultural Organization, 1981:68-75.
[4] 王燕, 刘邦凡, 赵天航. 论我国海洋能的研究与发展[J]. 生态经济, 2017, 33(4):102-106.WANG Yan, LIU Bangfan, ZHAO Tianhang. On the research and development of marine energy in China[J]. Ecological economy, 2017, 33(4):102-106.
[5] 刘伟民, 麻常雷, 陈凤云, 等. 海洋可再生能源开发利用与技术进展[J]. 海洋科学进展, 2018, 36(1):1-17, 18.LIU Weimin, MA Changlei, CHEN Fengyun, et al. Exploitation and technical progress of marine renewable energy[J]. Advances in marine science, 2018, 36(1):1-17, 18.
[6] Agency(irena) International Renewable Energy. Ocean energy technology:Innovation, patents, market status and trends[R]. Abu Dhabi:IRENA, 2014.
[7] JAOHINDY P, MCTAVISH S, GARDE F, et al. An analysis of the transient forces acting on Savonius rotors with different aspect ratios[J]. Renewable energy, 2013, 55:286-295.
[8] KAMOJI M A, KEDARE S B, PRABHU S V. Experimental investigations on single stage, two stage and three stage conventional Savonius rotor[J]. International journal of energy research, 2008, 32(10):877-895.
[9] SAVONIUS S J. The S-rotor and its applications[J]. Mechanical engineering, 1931, 53(5):333-338.
[10] GLAUERT H. Airplane propellers[M]//Aerodynamic Theory. Berlin:Springer, 1935:169-360.
[11] TEMPLIN R J. Aerodynamic performance theory for the NRC vertical-axis wind turbine[R]. NRC of Canada TR. LTR-LA-160. Ottawa, ON, Canada:National Research Council of Canada, 1974.
[12] STRICKLAND J H. The Darrieus turbine:A performance prediction model using multiple streamtubes[R]. SAND75-0431. Albuquerque:Sandia National Laboratories, 1975:1-31.
[13] PARASCHIVOIU I. Aerodynamic loads and performance of the Darrieus rotor[J]. Journal of energy, 1981, 6:406-412.
[14] SHARPE D J. Wind turbine aerodynamics[M]//FRERIS L L. Wind Energy Conversion System. Hemel Hempstead:Prentice Hall, 1990:54-118.
[15] 张亮, 汪鲁兵, 李凤来, 等. 竖轴变攻角潮流发电水轮机性能预报流管模型研究[J]. 哈尔滨工程大学学报, 2004, 25(3):261-266.ZHANG Liang, WANG Lubing, LI Fenglai, et al. Streamtube models for performance prediction of vertical-axis variable-pitch turbine for tidal current energy conversion[J]. Journal of Harbin Engineering University, 2004, 25(3):261-266.
[16] WILSON R E, LISSAMAN P B S, WALKER S N. Aerodynamic performance of windturbines.ERDA/NSF/04014-7611. 1976:111-64.
[17] VAN DUSEN E S, KIRCHHOFF R H. A two dimensional vortex sheet model of a Savonius rotor[C]//Fluids Engineering in Advanced Energy Systems. Proceedings of the Winter Annual Meeting. New York:American Society of Mechanical Engineers, 1978:15-31.
[18] OGAWA T. Theoretical study on the flow about savonius rotor[J]. Journal of fluids engineering, 1984, 106(1):85-91.
[19] FERNANDO M S U K, MODI V J. A numerical analysis of the unsteady flow past a Savonius wind turbine[J]. Journal of wind engineering and industrial aerodynamics, 1989, 32(3):303-327.
[20] AFUNGCHUI D, KAMOUN B, HELALI A, et al. The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method[J]. Renewable energy, 2010, 35(1):307-313.
[21] AFUNGCHUI D, KAMOUN B, HELALI A. Vortical structures in the wake of the savonius wind turbine by the discrete vortex method[J]. Renewable energy, 2014, 69:174-179.
[22] ALTAN B D, ATILGAN M. An experimental and numerical study on the improvement of the performance of Savonius wind rotor[J]. Energy conversion and management, 2008, 49(12):3425-3432.
[23] ZULLAH M A, LEE Y H. Performance evaluation of a direct drive wave energy converter using CFD[J]. Renewable energy, 2013, 49:237-241.
[24] FERRARI G, FEDERICI D, SCHITO P, et al. CFD study of Savonius wind turbine:3D model validation and parametric analysis[J]. Renewable energy, 2016, 105:722-734.
[25] KERIKOUSA E, THÉVENIN D. Optimal shape of thick blades for a hydraulic Savonius turbine[J]. Renewable energy, 2019, 134:629-638.
[26] MURAI Y, NAKADA T, SUZUKI T, et al. Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine[J]. Measurement science and technology, 2007, 18(8):2491-2503.
[27] AHMED M R, FAIZAL M, LEE Y H. Optimization of blade curvature and inter-rotor spacing of Savonius rotors for maximum wave energy extraction[J]. Ocean engineering, 2013, 65:32-38.
[28] SHIGETOMI A, MURAI Y, TASAKA Y, et al. Interactive flow field around two Savonius turbines[J]. Renewable energy, 2010, 36(2):536-545.
[29] PATEL V, ELDHO T I, PRABHU S V. Theoretical study on the prediction of the hydrodynamic performance of a Savonius turbine based on stagnation pressure and impulse momentum principle[J]. Energy conversion and management, 2018, 168:545-563.
[30] MAHMOUD N H, EL-HAROUNA A A, WAHBA E, et al. An experimental study on improvement of Savonius rotor performance[J]. Alexandria engineering journal, 2012, 51(1):19-25.
[31] PATEL V, BHAT G, ELDHO T I, et al. Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine[J]. International journal of energy research, 2017, 41(6):829-844.
[32] FUJISAWA N. On the torque mechanism of Savonius rotors[J]. Journal of wind engineering and industrial aerodynamics, 1992, 40(3):277-292.
[33] ALEXANDER A J, HOLOWNIA B P. Wind tunnel tests on a savonius rotor[J]. Journal of wind engineering and industrial aerodynamics, 1978, 3(4):343-351.
[34] KAMOJI M A, KEDARE S B, PRABHU S V. Experimental investigations on single stage modified savonius rotor[J]. Applied energy, 2009, 86(7/8):1064-1073.
[35] BHAYO B A, AL-KAYIEM H H. Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system[J]. Energy, 2017, 138:752-763.
[36] 赵振宙, 郑源, 周大庆, 等. 基于数值模拟Savonius风力机性能优化研究[J]. 太阳能学报, 2010, 31(7):907-911.ZHAO Zhenzhou, ZHENG Yuan, ZHOU Daqing, et al. Optimization of the performance of savonius wind turbine based on nuerical study[J]. Acta energiae solaris sinica, 2010, 31(7):907-911.
[37] 边佩翔, 杨志宏, 王勇, 等. Savonius式水轮机水动力学性能[J]. 浙江大学学报(工学版), 2018, 52(2):268-272.BIAN Peixiang, YANG Zhihong, WANG Yong, et al. Hydrodynamic performance of Savonius water turbine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2):268-272.
[38] MABROUKI I, DRISS Z, ABID M S. Performance analysis of a water savonius rotor:effect of the internal overlap[J]. Sustainable energy, 2014, 2(4):121-125.
[39] KAMOJI M A, KEDARE S B, PRABHU S V. Performance tests on helical Savonius rotors[J]. Renewable energy, 2009, 34(3):521-529.
[40] TALUKDAR P K, SARDAR A, KULKARNI V, et al. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations[J]. Energy Conversion and Management, 2018, 158:36-49.
[41] ROSMIN N, JAUHARI A S, MUSTAAMAL A H, et al. Experimental Study for the single-stage and double-stage two-bladed savonius micro-sized turbine for Rain Water Harvesting (RWH) system[J]. Energy procedia, 2015, 68:274-281.
[42] SAHA U K, THOTLA S, MAITY D. Optimum design configuration of Savonius rotor through wind tunnel experiments[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96(8/9):1359-1375.
[43] 田文龙, 宋保维, 毛昭勇. 椭圆叶片Savonius风力机叶轮气动性能数值计算[J]. 中国电机工程学报, 2014, 34(32):5796-5802.TIAN Wenlong, SONG Baowei, MAO Zhaoyong. Numerical investigation of a savonius wind turbine with elliptical blades[J]. Proceedings of the CSEE, 2014, 34(32):5796-5802.
[44] KUMAR A, SAINI R P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades[J]. Renewable energy, 2017, 113:461-478.
[45] KUMAR A, SAINI R P. Performance analysis of a Savonius hydrokinetic turbine having twisted blades[J]. Renewable energy, 2017, 108:502-522.
[46] 丁涛, 刘继昂, 方露梦, 等. 基于多次Bezier曲线的Savonius风力机叶片优化设计[J]. 太阳能学报, 2017, 38(4):959-965.DING Tao, LIU Ji’ang, FANG Lumeng, et al. Optimization design of savonius wind turbine blade based on multiple bezier curve[J]. Acta energiae solaris sinica, 2017, 38(4):959-965.
[47] ZHOU Qinanwei, XU Zhang, CHENG Shengyong, et al. Innovative Savonius rotors evolved by genetic algorithm based on 2D-DCT encoding[J]. Soft computing, 2018, 22(23):8001-8010.
[48] TARTUFERI M, D’ALESSANDRO V, MONTELPARE S, et al. Enhancement of Savonius wind rotor aerodynamic performance:a computational study of new blade shapes and curtain systems[J]. Energy, 2015, 79:371-384.
[49] 王伟, 宋保维, 毛昭勇, 等. Savonius风机叶轮双侧外形优化设计[J]. 哈尔滨工程大学学报, 2019, 40(2):254-259, 272.WANG Wei, SONG Baowei, MAO Zhaoyong, et al. Optimization of Savonius wind turbine impeller with bilateral contour[J]. Journal of Harbin Engineering University, 2019, 40(2):254-259, 272.
[50] OSTOS I, RUIZ I, GAJIC M, et al. A modified novel blade configuration proposal for a more efficient VAWT using CFD tools[J]. Energy conversion and management, 2019, 180:733-746.
[51] GOLECHA K, ELDHO T I, PRABHU S V. Influence of the deflector plate on the performance of modified Savonius water turbine[J]. Applied energy, 2011, 88(9):3207-3217.
[52] KUMAR D, SARKAR S. Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis[J]. Energy, 2016, 116:609-618.
[53] IRABU K, ROY J N. Characteristics of wind power on Savonius rotor using a guide-box tunnel[J]. Experimental thermal and fluid science, 2007, 32(2):580-586.
[54] YAO Y X, TANG Z P, WANG X W. Design based on a parametric analysis of a drag driven VAWT with a tower cowling[J]. Journal of wind engineering and industrial aerodynamics, 2013, 116:32-39.
[55] KORPRASERTSAK N, LEEPHAKPREEDA T. Analysis and optimal design of wind boosters for Vertical Axis Wind Turbines at low wind speed[J]. Journal of wind engineering and industrial aerodynamics, 2016, 159:9-18.
[56] 田文龙, 宋保维, 毛昭勇. 一种新型垂直轴式风机叶轮的数值仿真[J]. 机械工程学报, 2013, 49(18):144-149.TIAN Wenlong, SONG Baowei, MAO Zhaoyong. Numerical simulations of vertical axis wind turbine with controllable blades[J]. Journal of mechanical engineering, 2013, 49(18):144-149.
[57] 毛昭勇, 田文龙, 丁文俊. 伸缩叶片式垂直轴风机叶轮的数值仿真[J]. 西北工业大学学报, 2015, 33(4):633-638.MAO Zhaoyong, TIAN Wenlong, DING Wenjun. Numerical investigation of a novel vertical axis wind turbine with controllable blades[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):633-638.
[58] 汤志鹏. 基于Savonius结构的叶片可展式垂直轴风力机性能研究[D]. 哈尔滨:哈尔滨工业大学, 2015.TANG Zhipeng. A study on the performance of vertical axis wind turbine with expandable blades based on the structure of savonius turbine[D]. Harbin:Harbin Institute of Technology, 2015.
[59] BEHROUZI F, NAKISA M, MAIMUN A, et al. Performance investigation of self-adjusting blades turbine through experimental study[J]. Energy conversion and management, 2019, 181:178-188.

备注/Memo

备注/Memo:
收稿日期:2019-05-15。
基金项目:黑龙江省自然科学基金(E2018019);中央高校基本科研业务费(HEUCFP201733).
作者简介:姚建均,男,教授,博士生导师;李凤甡,男,博士研究生.
通讯作者:姚建均,E-mail:travisyao@126.com.
更新日期/Last Update: 2020-03-24