[1]孙梦楠,宋桂秋,周世华,等.通风及内热源参数的方腔内混合对流模拟[J].哈尔滨工程大学学报,2021,42(2):273-279.[doi:10.11990/jheu.201905105]
 SUN Mengnan,SONG Guiqiu,ZHOU Shihua,et al.In-cavity mixed convection simulation based on ventilation and internal heat source parameters[J].Journal of Harbin Engineering University,2021,42(2):273-279.[doi:10.11990/jheu.201905105]
点击复制

通风及内热源参数的方腔内混合对流模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期数:
2021年2期
页码:
273-279
栏目:
出版日期:
2021-02-05

文章信息/Info

Title:
In-cavity mixed convection simulation based on ventilation and internal heat source parameters
作者:
孙梦楠1 宋桂秋1 周世华1 董祉序2
1. 东北大学 机械工程与自动化学院, 辽宁 沈阳 110819;
2. 沈阳工业大学 机械工程学院, 辽宁 沈阳 110870
Author(s):
SUN Mengnan1 SONG Guiqiu1 ZHOU Shihua1 DONG Zhixu2
1. School of Mechanical Engineering&Automation, Northeastern University, Shenyang 110819, China;
2. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
关键词:
对流换热混合对流MRT-LBMFDM耦合算法方腔热源形状开口位置
分类号:
O325,TK79
DOI:
10.11990/jheu.201905105
文献标志码:
A
摘要:
为考虑热源形态及通风条件对腔内流体流动及传热性能的影响,本文采用基于多参数弛豫时间模型格子Boltzmann法与有限差分法的耦合算法,对中心热源条件下开口方腔内的混合对流现象进行研究。在不同进、出流口位置和热源形状下,分析了混合对流的流动、温度及换热特性,并给出了流函数线和等温线分布以及热源表面的努赛尔数。数值计算结果明:当进、出流口的位置固定时,热源形状决定了局部对流换热强度,但对温度场的影响较小;平均努赛尔数随着圆角半径R的增大而增大,并在进、出流口分别位于中部和顶部时,取得最大值。

参考文献/References:

[1] ANDRZEJCZYK R, MUSZYNSKI T. An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger[J]. Applied thermal engineering, 2018, 136:237-251.
[2] PI?A-ORTIZ A, HINOJOSA J F, NAVARRO J M A, et al. Experimental and numerical study of turbulent mixed convection in a cavity with an internal heat source[J]. Journal of building physics, 2018, 42(2):142-172.
[3] NOSONOV I I, SHEREMET M A. Conjugate mixed convection in a rectangular cavity with a local heater[J]. International journal of mechanical sciences, 2018, 136:243-251.
[4] 李培生, 孙金丛, 张莹, 等. 内置高温体倾斜多孔腔体中自然对流的LBM模拟[J]. 哈尔滨工程大学学报, 2018, 39(6):1073-1080.LI Peisheng, SUN Jincong, ZHANG Ying, et al. Lattice Boltzmann simulation of natural convection in an inclined porous cavity with a hot square obstacle[J]. Journal of Harbin Engineering University, 2018, 39(6):1073-1080.
[5] RADHAKRISHNAN T V, VERMA A K, BALAJI C, et al. An experimental and numerical investigation of mixed convection from a heat generating element in a ventilated cavity[J]. Experimental thermal and fluid science, 2007, 32(2):502-520.
[6] 孙猛, 雷兢, 刘靖, 等. 开口方腔内混合对流换热的数值模拟[J]. 热科学与技术, 2006, 5(4):295-300.SUN Meng, LEI Jing, LIU Jing, et al. Numerical simulation of mixed convective heat transfer in open-ended cavity[J]. Journal of thermal science and technology, 2006, 5(4):295-300.
[7] KARIMI F, XU Hongtao, WANG Zhiyun, et al. Numerical simulation of steady mixed convection around two heated circular cylinders in a square enclosure[J]. Heat transfer engineering, 2016, 37(1):64-75.
[8] GAROOSI F, HOSEININEJAD F. Numerical study of natural and mixed convection heat transfer between differentially heated cylinders in an adiabatic enclosure filled with nanofluid[J]. Journal of molecular liquids, 2016, 215:1-17.
[9] CHAMKHA A J, HUSSAIN S H, ABD-AMER Q R. Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder[J]. Numerical heat transfer, part A:applications, 2011, 59(1):58-79.
[10] 张翠珍, 杨茉, 单彦广, 等. 方腔内竖直板混合对流换热的数值模拟[J]. 工程热物理学报, 2009, 30(2):309-311.ZHANG Cuizhen, YANG Mo, SHAN Yanguang, et al. Numerical simulation of mixed convection heat transfer in an enclosure with vertical isothermal plate[J]. Journal of engineering thermophysics, 2009, 30(2):309-311.
[11] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2009.GUO Zhaoli, ZHENG Chuguang. Theory and applications of lattice Boltzmann method[M]. Beijing:Science Press, 2009.
[12] 王猛, 朱卫兵. 基于孔隙尺度的方腔内多孔介质融化模拟研究[J]. 哈尔滨工程大学学报, 2015, 36(6):774-778.WANG Meng, ZHU Weibing. Simulation study for melting of porous media in a square cavity based on the pore scale[J]. Journal of Harbin Engineering University, 2015, 36(6):774-778.
[13] FRAPOLLI N, CHIKATAMARLA S S, KARLIN I. Simulations of heated bluff-bodies with the multi-speed entropic lattice Boltzmann method[J]. Journal of statistical physics, 2015, 161(6):1434-1452.
[14] 孙涛, 孙建刚, 昂雪野, 等. 基于格子Boltzmann方法的微通道传热特性数值研究[J]. 太阳能学报, 2016, 37(9):2344-2349.SUN Tao, SUN Jiangang, ANG Xueye, et al. A numerical investigation on heat transfer characteristic of micro-channel strutures by lattice Boltzmann method[J]. Acta energiae solaris sinica, 2016, 37(9):2344-2349.
[15] BETTAIBI S, KUZNIK F, SEDIKI E. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid[J]. Physica A:statistical mechanics and its applications, 2016, 444:311-326.
[16] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009.HE Yaling, WANG Yong, LI Qing. Lattice Boltzmann method:theory and applications[M]. Beijing:Science Press, 2009.
[17] YU Dazhi, MEI Renwei, LUO Lishi, et al. Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in aerospace sciences, 2003, 39(5):329-367.
[18] MEZRHAB A, BOUZIDI M H, LALLEMAND P. Hybrid lattice-Boltzmann finite-difference simulation of convective flows[J]. Computers & fluids, 2004, 33(4):623-641.

相似文献/References:

[1]石帅,阎昌琪,丁铭,等.针翅套管双侧强迫对流换热实验研究 [J].哈尔滨工程大学学报,2013,(03):287.[doi:10.3969/j.issn.1006-7043.201206043]
[2]马明晗,武玉才,李永刚.核电四极汽轮发电机转子典型故障温度场分析[J].哈尔滨工程大学学报,2019,40(05):1018.[doi:10.11990/jheu.201801030]
 MA Minghan,WU Yucai,LI Yonggang.Temperature field analysis of the typical faults of nuclear four-pole turbo-generator rotor[J].Journal of Harbin Engineering University,2019,40(2):1018.[doi:10.11990/jheu.201801030]

备注/Memo

备注/Memo:
收稿日期:2019-05-28。
基金项目:国家科技支撑计划(2015BAF07B07);国家自然科学基金青年基金项目(51805075).
作者简介:孙梦楠,女,博士研究生;宋桂秋,男,教授,博士生导师.
通讯作者:宋桂秋,E-mail:guiqiusong@126.com.
更新日期/Last Update: 2021-02-27