[1]郑俊杰,吴超传,宋杨,等.MICP胶结钙质砂的强度试验及强度离散性研究[J].哈尔滨工程大学学报,2020,41(2):250-256.[doi:10.11990/jheu.201906023]
 ZHENG Junjie,WU Chaochuan,SONG Yang,et al.Study of the strength test and strength dispersion of MICP-treated calcareous sand[J].hebgcdxxb,2020,41(2):250-256.[doi:10.11990/jheu.201906023]
点击复制

MICP胶结钙质砂的强度试验及强度离散性研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
250-256
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Study of the strength test and strength dispersion of MICP-treated calcareous sand
作者:
郑俊杰 吴超传 宋杨 崔明娟
华中科技大学 岩土与地下工程研究所, 湖北 武汉 430074
Author(s):
ZHENG Junjie WU Chaochuan SONG Yang CUI Mingjuan
Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
微生物固化钙质砂碳酸钙含量胶结模式强度离散性无侧限抗压强度胶结水平碳酸钙分布均匀性差异系数
分类号:
TU443
DOI:
10.11990/jheu.201906023
文献标志码:
A
摘要:
对钙质砂进行微生物固化可以显著改善其强度等力学特性,但不可避免地会出现强度离散的现象。为控制微生物固化钙质砂强度离散性,以更好应用于工程实际,本文对3种粒径级配的钙质砂进行微生物固化,并基于无侧限抗压强度试验、比重测试、碳酸钙含量测定,探讨颗粒粒径、胶结水平对微生物固化钙质砂相关物理指标、强度以及强度离散性的影响;同时开展扫描电镜(SEM)测试,进一步分析微生物固化钙质砂表面细观结构,探讨强度增长的内在机理,分析影响强度离散的主要因素。结果表明:微生物固化钙质砂的强度及其离散性均随胶结水平的提高而提高;MICP胶结产生的碳酸钙晶体"包裹"钙质砂颗粒的现象不利于强度的高效形成;微生物固化钙质砂的强度离散性主要由钙质砂土骨架差异性以及碳酸钙分布均匀性决定。

参考文献/References:

[1] 张家铭. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉:中国科学院研究生院(武汉岩土力学研究所), 2004.ZHANG Jiaming. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan:Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2004.
[2] 方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10):2773-2779.FANG Xiangwei, SHEN Chunni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and soil mechanics, 2015, 36(10):2773-2779.
[3] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological engineering, 2010, 36(2):197-210.
[4] CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of an aquaculture pond in sand[J]. Géotechnique, 2013, 63(10):871-875.
[5] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8):1486-1495.CHENG Xiaohui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese journal of geotechnical engineering, 2013, 35(8):1486-1495.
[6] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis:large-scale biogrout experiment[J]. Journal of geotechnical and geoenvironmental engineering, 2010, 136(12):1721-1728.
[7] LEE M L, NG W S, TANAKA Y. Stress-deformation and compressibility responses of bio-mediated residual soils[J]. Ecological engineering, 2013, 60:142-149.
[8] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1):38-45.LIU Hanlong, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese journal of geotechnical engineering, 2018, 40(1):38-45.
[9] 李捷, 方祥位, 申春妮, 等. 颗粒级配对珊瑚砂微生物固化影响研究[J]. 水利与建筑工程学报, 2016, 14(6):7-12, 43.LI Jie, FANG Xiangwei, SHEN Chunni, et al. Influence of grain composition on coral sand bio-cementation[J]. Journal of water resources and architectural engineering, 2016, 14(6):7-12, 43.
[10] 欧益希, 方祥位, 申春妮, 等. 颗粒粒径对微生物固化珊瑚砂的影响[J]. 水利与建筑工程学报, 2016, 14(2):35-39.OU Yixi, FANG Xiangwei, SHEN Chunni, et al. Influence of particle sizes of coral sand on bio-cementation[J]. Journal of water resources and architectural engineering, 2016, 14(2):35-39.
[11] 马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(S2):217-223.MA Ruinan, GUO Hongxian, CHENG Xiaohui, et al. Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and soil mechanics, 2018, 39(S2):217-223.
[12] AL QABANY A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 2013, 63(4):331-339.
[13] 南京水利科学研究院. GB/T 50123-1999, 土工试验方法标准[2007版] [S]. 北京:中国计划出版社, 1999.Nanjing Hydraulic Research Institute. GB/T 50123-1999, Standard for soil test method[S]. Beijing:China Planning Press, 1999.
[14] 崔明娟, 郑俊杰, 赖汉江. 菌液注射方式对微生物固化砂土动力特性影响试验研究[J]. 岩土力学, 2017, 38(11):3173-3178.CUI Mingjuan, ZHENG Junjie, LAI Hanjiang. Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and soil mechanics, 2017, 38(11):3173-3178.
[15] TOBLER D J, MACLACHLAN E, PHOENIX V R. Microbially mediated plugging of porous media and the impact of differing injection strategies[J]. Ecological engineering, 2012, 42:270-278.
[16] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Australia:Murdoch University, 2004.
[17] 崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(S2):397-402.CUI Mingjuan, ZHENG Junjie, LAI Hanjiang, et al. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and soil mechanics, 2016, 37(S2):397-402.
[18] CHU Jian, IVANOV V, NAEIMI M, et al. Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta geotechnica, 2014, 9(2):277-285.
[19] 韩素芳, 杜益彦. 混凝土强度的平均值与其变异性[J]. 混凝土及加筋混凝土, 1983(4):4-8.
[20] 孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5):939-944.SUN Xiaohao, MIAO Linchang, TONG Tianzhi, et al. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese journal of geotechnical engineering, 2018, 40(5):939-944.

备注/Memo

备注/Memo:
收稿日期:2019-06-06。
基金项目:国家重点研发计划(2016YFC0800200);国家自然科学基金项目(51478201,51708243);中国博士后科学基金项目(2016M600595,2018M632862,2018T110769).
作者简介:郑俊杰,男,教授,博士生导师,长江学者特聘教授;吴超传,男,硕士研究生.
通讯作者:吴超传,E-mail:wuchaochuan1@hust.edu.cn.
更新日期/Last Update: 2020-03-24