[1]任芸,朱祖超,吴登昊,等.基于熵产的离心泵流动损失特性研究[J].哈尔滨工程大学学报,2021,42(2):266-272.[doi:10.11990/jheu.201906053]
 REN Yun,ZHU Zuchao,WU Denghao,et al.Flow loss characteristics of a centrifugal pump based on entropy production[J].Journal of Harbin Engineering University,2021,42(2):266-272.[doi:10.11990/jheu.201906053]
点击复制

基于熵产的离心泵流动损失特性研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期数:
2021年2期
页码:
266-272
栏目:
出版日期:
2021-02-05

文章信息/Info

Title:
Flow loss characteristics of a centrifugal pump based on entropy production
作者:
任芸12 朱祖超2 吴登昊3 祝之兵1 李晓俊2
1. 浙江工业大学 之江学院, 浙江 绍兴 312030;
2. 浙江理工大学 机械与自动控制学院, 浙江 杭州 310018;
3. 中国计量大学 计量测试工程学院, 浙江 杭州 310018
Author(s):
REN Yun12 ZHU Zuchao2 WU Denghao3 ZHU Zhibing1 LI Xiaojun2
1. Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China;
2. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China;
3. College of Metrology and Measurement, China Jiliang University, Hangzhou 310018, China
关键词:
离心泵叶轮转速能量损失熵产Q准则涡核数值计算
分类号:
TH311
DOI:
10.11990/jheu.201906053
文献标志码:
A
摘要:
离心泵被广泛的应用于航空航天和石油化工领域,其内部的流动损失特征尚未被完全揭示。为了揭示离心泵内部流动损失机理,本文以1台带诱导轮的离心泵模型为研究对象,采用熵产理论和Q准则对不同转速和工况下的离心泵内部各个部件的流动损失特性进行定量分析。研究结果表明:局部熵产和壁面熵产值随着转速的增大而增大,与湍流耗散熵产和直接耗散熵产相比,壁面熵产所占的比率最高。腔体、蜗壳和叶轮是离心泵内部能量损失的核心区;叶轮内部的大量涡流和流体对叶片的冲击是造成叶轮能量损失的主要因素;叶顶泄漏涡是引起诱导轮能量损失的主要原因。

参考文献/References:

[1] 朱祖超. 低比转速高速离心泵的理论及设计应用[M]. 北京:机械工业出版社, 2008.
[2] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社, 2011.GUAN Xingfan. Modern pumps theory and design[M]. Beijing:China Aerospace Press, 2011.
[3] JOHANN F G. Centrifugal pumps[M]. New York:Springer Berlin Heidelberg, 2008.
[4] WU J Z, WU J M. Vorticity dynamics on boundaries[J]. Advances in applied mechanics, 1996, 32:119-222, 222A, 222B, 222C, 222D, 222E, 222F, 222G, 222H, 223-275.
[5] DOU H S. Mechanism of flow instability and transition to turbulence[J]. International journal of non-linear mechanics, 2006, 41(4):512-517.
[6] DOU H S, KHOO B C. Investigation of Turbulent transition in plane Couette flows using energy gradient method[J]. Advances in applied mathematics and mechanics, 2011, 3(2):165-180.
[7] KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International journal of heat and fluid flow, 2005, 26(4):672-680.
[8] KOCK F, HERWIG H. Local entropy production in turbulent shear flows:a high-Reynolds number model with wall functions[J]. International journal of heat and mass transfer, 2004, 47(10/11):2205-2215.
[9] 谈明高, 刘厚林, 袁寿其. 离心泵水力损失的计算[J]. 江苏大学学报(自然科学版), 2007, 28(5):405-408.TAN Minggao, LIU Houlin, YUAN Shouqi. Calculation of hydraulic loss in centrifugal pumps[J]. Journal of Jiangsu University (Natural Science Edition), 2007, 28(5):405-408.
[10] 王凯, 吴贤芳, 陈新响, 等. 离心泵多工况能量损失系数修正方法[J]. 中国农村水利水电, 2013(2):122-125.WANG Kai, WU Xianfang, CHEN Xinxiang, et al. Multi-condition correction method of energy loss coefficients for centrifugal pumps[J]. China rural water and hydropower, 2013(2):122-125.
[11] 刘厚林, 谈明高, 袁寿其. 离心泵理论扬程的计算[J]. 农业机械学报, 2006, 37(12):87-90.LIU Houlin, TAN Minggao, YUAN Shouqi. Research on calculation of theoretical head of centrifugal pumps[J]. Transactions of the Chinese society for agricultural machinery, 2006, 37(12):87-90.
[12] JI B, LUO X W, ARNDT R E A, et al. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International journal of multiphase flow, 2015, 68:121-134.
[13] 李志峰, 王乐勤, 戴维平, 等. 离心泵启动过程的涡动力学诊断[J]. 工程热物理学报, 2010, 31(1):48-51.LI Zhifeng, WANG Leqin, DAI Weiping, et al. Diagnostics of a centrifugal pump during starting period based on vorticity dynamics[J]. Journal of engineering thermophysics, 2010, 31(1):48-51.
[14] ZHOU Xin, ZHANG Yongxue, JI Zhongli, et al. The optimal hydraulic design of centrifugal impeller using genetic algorithm with BVF[J]. International journal of rotating machinery, 2014, 2014:845302.
[15] 窦华书, 蒋威, 张玉良, 等. 基于能量梯度理论的离心泵内流动不稳定研究[J]. 农业机械学报, 2014, 45(12):88-92, 103.DOU Huashu, JIANG Wei, ZHANG Yuliang, et al. Flow instability in centrifugal pump based on energy gradient theory[J]. Transactions of the Chinese society for agricultural machinery, 2014, 45(12):88-92, 103.
[16] LI Xiaojun, JIANG Zhiwu, ZHU Zuchao, et al. Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump[J]. Proceedings of the institution of mechanical engineers, part C:journal of mechanical engineering science, 2018, 232(24):4637-4646.
[17] HOU Hucan, ZHANG Yongxue, LI Zhenlin, et al. Numerical analysis of entropy production on a LNG cryogenic submerged pump[J]. Journal of natural gas science and engineering, 2016, 36:87-96.
[18] HOU Hucan, ZHANG Yongxue, LI Zhenlin. A numerically research on energy loss evaluation in a centrifugal pump system based on local entropy production method[J]. Thermal science, 2017, 21(3):1287-1299.
[19] 王松岭, 张磊, 叶学民, 等. 基于熵产理论的离心风机性能优化[J]. 中国电机工程学报, 2011, 31(11):86-91.WANG Songling, ZHANG Lei, YE Xuemin, et al. Performance optimization of centrifugal fan based on entropy generation theory[J]. Proceedings of the CSEE, 2011, 31(11):86-91.
[20] 张帆, 袁寿其, 魏雪园, 等. 基于熵产的侧流道泵流动损失特性研究[J]. 机械工程学报, 2018, 54(22):137-144.ZHANG Fan, YUAN Shouqi, WEI Xueyuan, et al. Study on flow loss characteristics of side channel pump based on entropy production[J]. Journal of mechanical engineering, 2018, 54(22):137-144.
[21] WANG Cong, ZHANG Yongxue, HOU Hucan, et al. Entropy production diagnostic analysis of energy consumption for cavitation flow in a two-stage LNG cryogenic submerged pump[J]. International journal of heat and mass transfer, 2019, 129:342-356.
[22] CHANG Hao, SHI Weidong, LI Wei, et al. Energy loss analysis of novel self-priming pump based on the entropy production theory[J]. Journal of thermal science, 2019, 28(2):306-318.
[23] 卢金玲, 王李科, 廖伟丽, 等. 基于熵产理论的水轮机尾水管涡带研究[J]. 水利学报, 2019, 50(2):233-241.LU Jinling, WANG Like, LIAO Weili, et al. Entropy production analysis for vortex rope of a turbine model[J]. Journal of hydraulic engineering, 2019, 50(2):233-241.
[24] ZHANG Yuning, LIU Kaihua, XIAN Haizhen, et al. A review of methods for vortex identification in hydroturbines[J]. Renewable and sustainable energy reviews, 2018, 81:1269-1285.

相似文献/References:

[1]刘占生,刘全忠,王洪杰.离心泵变工况流场及叶轮流体激振力研究[J].哈尔滨工程大学学报,2008,(12):1304.
 LIU Zhan-sheng,LIU Quan-zhong,WANG Hong-jie.Analysis of off-design flow fields in centrifugal pumps and hydrodynamic forces on impellers[J].Journal of Harbin Engineering University,2008,(2):1304.
[2]常书平,王永生,丁江明,等.混流式喷水推进泵水力设计和性能预报[J].哈尔滨工程大学学报,2011,(06):708.[doi:doi:10.3969/j.issn.1006-7043.2011.06.003]
 CHANG Shuping,WANG Yongsheng,DING Jiangming,et al.Hydraulic design and performance predictions of a waterjet mixedflow pump[J].Journal of Harbin Engineering University,2011,(2):708.[doi:doi:10.3969/j.issn.1006-7043.2011.06.003]
[3]常书平,王永生,靳栓宝.轴流式喷水推进泵水力设计和性能检验[J].哈尔滨工程大学学报,2011,(10):1278.[doi:doi:10.3969/j.issn.1006-7043.2011.10.003]
 CHANG Shuping,WANG Yongsheng,JIN Shuanbao.Hydraulic design and performance investigation of a waterjet axial-flow pump[J].Journal of Harbin Engineering University,2011,(2):1278.[doi:doi:10.3969/j.issn.1006-7043.2011.10.003]
[4]王凯,刘厚林,袁寿其,等.离心泵叶轮轴面图的3点水力优化[J].哈尔滨工程大学学报,2012,(07):834.[doi:10.3969/j.issn.1006-7043.201108007]
 WANG Kai,LIU Houlin,YUAN Shouqi,et al.Three-point hydraulic optimization of impeller meridional plane for centrifugal pumps[J].Journal of Harbin Engineering University,2012,(2):834.[doi:10.3969/j.issn.1006-7043.201108007]
[5]王勇,刘厚林,袁寿其,等.叶片数对离心泵空化诱导振动噪声的影响[J].哈尔滨工程大学学报,2012,(11):1405.[doi:10.3969/j.issn.1006-7043.201111073]
 WANG Yong,LIU Houlin,YUAN Shouqi,et al.Effects of the blade number on cavitation-induced vibration and noise of centrifugal pumps[J].Journal of Harbin Engineering University,2012,(2):1405.[doi:10.3969/j.issn.1006-7043.201111073]
[6]付强,袁寿其,朱荣生,等.离心泵气液混输瞬态过渡过程水力特性研究[J].哈尔滨工程大学学报,2012,(11):1428.[doi:10.3969/j.issn.1006-7043.201110027]
 FU Qiang,YUAN Shouqi,ZHU Rongsheng,et al.Hydraulic characteristics of transient transition process of gas-liquid mixed flow in a centrifugal pump[J].Journal of Harbin Engineering University,2012,(2):1428.[doi:10.3969/j.issn.1006-7043.201110027]
[7]洪锋,袁建平,张金凤,等.余热排出泵小破口失水事故空化特性数值分析[J].哈尔滨工程大学学报,2015,(03):297.[doi:10.3969/j.issn.1006-7043.201311083]
 HONG Feng,YUAN Jianping,ZHANG Jinfeng,et al.Numerical analysis of cavitating flow characteristics in residual heat removal pumps during the SBLOCA[J].Journal of Harbin Engineering University,2015,(2):297.[doi:10.3969/j.issn.1006-7043.201311083]
[8]江伟,李国君,张新盛.基于叶片载荷分布的离心泵叶轮水力性能优化[J].哈尔滨工程大学学报,2015,(04):505.[doi:10.3969/j.issn.1006-7043.201312085]
 JIANG Wei,LI Guojun,ZHANG Xinsheng.Optimization of the hydraulic performance of a centrifugal pump impeller based on the blade load distribution[J].Journal of Harbin Engineering University,2015,(2):505.[doi:10.3969/j.issn.1006-7043.201312085]
[9]牟介刚,刘菲,谷云庆,等.压水室隔舌安放角对离心泵无过载性能的影响[J].哈尔滨工程大学学报,2015,(08):1092.[doi:10.3969/j.issn.1006-7043.201405007]
 MOU Jiegang,LIU Fei,GU Yunqing,et al.Effect of the setting angle of a volute tongue on non-overloading performance of centrifugal pumps[J].Journal of Harbin Engineering University,2015,(2):1092.[doi:10.3969/j.issn.1006-7043.201405007]
[10]牟介刚,陈莹,谷云庆,等.悬臂式离心泵流固耦合特性研究[J].哈尔滨工程大学学报,2016,37(08):1111.[doi:10.11990/jheu.201506030]
 MOU Jiegang,CHEN Ying,GU Yunqing,et al.Research on fluid-structure interaction characteristics of cantilever centrifugal pump[J].Journal of Harbin Engineering University,2016,37(2):1111.[doi:10.11990/jheu.201506030]
[11]顾延东,袁寿其,裴吉,等.泵叶轮出口宽度对蜗壳内压力脉动强度的影响[J].哈尔滨工程大学学报,2017,38(07):1023.[doi:10.11990/jheu.201608030]
 GU Yandong,YUAN Shouqi,PEI Ji,et al.Effects of the outlet width of pump impeller on pressure fluctuation intensity in volute[J].Journal of Harbin Engineering University,2017,38(2):1023.[doi:10.11990/jheu.201608030]

备注/Memo

备注/Memo:
收稿日期:2019-06-17。
基金项目:浙江省自然科学基金项目(LY21E060004,LGG21E090002).
作者简介:任芸,女,副教授.
通讯作者:任芸,E-mail:renyun@zzjc.edu.cn.
更新日期/Last Update: 2021-02-27