[1]王浩,沈惠军,张寒,等.隔震曲线连续梁桥粘滞阻尼器参数优化分析[J].哈尔滨工程大学学报,2020,41(2):282-288.[doi:10.11990/jheu.201906080]
 WANG Hao,SHEN Huijun,ZHANG Han,et al.Parameter optimization analysis of viscous dampers for isolated continuous curved girder bridges[J].hebgcdxxb,2020,41(2):282-288.[doi:10.11990/jheu.201906080]
点击复制

隔震曲线连续梁桥粘滞阻尼器参数优化分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
282-288
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Parameter optimization analysis of viscous dampers for isolated continuous curved girder bridges
作者:
王浩 沈惠军 张寒 郑文智 沙奔 李爱群
东南大学 混凝土及预应力混凝土结构教育部重点实验室, 江苏 南京 210096
Author(s):
WANG Hao SHEN Huijun ZHANG Han ZHENG Wenzhi SHA Ben LI Aiqun
Key Laboratory of Concrete and Prestressed Concrete of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
曲线连续梁桥减隔震粘滞阻尼器敏感性分析参数优化零阶优化算法隔震支座地震响应
分类号:
U441
DOI:
10.11990/jheu.201906080
文献标志码:
A
摘要:
为了提升粘滞阻尼器在隔震曲线梁桥中的减隔震效果,本文对其力学性能参数进行优化分析。基于ANSYS建立了某三跨隔震曲线连续梁桥的有限元模型,采用非线性动力时程法,分析了粘滞阻尼器速度指数和阻尼系数等参数对地震作用下支座位移和墩底剪力的影响,并确定了粘滞阻尼器参数的合理取值范围。在此基础上,基于零阶优化算法,以墩底剪力绝对值之和为目标函数,对粘滞阻尼器进行了参数优化,并对比分析了优化前后的减震效果。结果表明:阻尼系数对支座位移和墩底剪力的影响十分显著;速度指数对支座位移和墩底剪力的影响与阻尼系数有关;粘滞阻尼器参数优化后,支座切向和径向位移减震率分别在47%和22.2%以上,中墩支座的切向位移减震率高于边墩支座,而边墩支座的径向位移减震率高于中墩支座;边、中墩切向剪力差值由956 kN减小为220 kN,径向剪力差值由441 kN减小为130 kN,其受力相对更为均衡。

参考文献/References:

[1] 王丽, 周锡元, 闫维明. 曲线梁桥地震响应的简化分析方法[J]. 工程力学, 2006, 23(6):77-84.WANG Li, ZHOU Xiyuan, YAN Weiming. Simplified analysis method for seismic response of curved bridges[J]. Engineering mechanics, 2006, 23(6):77-84.
[2] 徐艳, 童川, 李建中. 设置纵桥向粘滞阻尼器的斜拉桥的简化动力模型[J]. 华南理工大学学报(自然科学版), 2019, 47(4):90-98.XU Yan, TONG Chuan, LI Jianzhong. Seismic mitigation analysis of viscous dampers for curved continuous girder bridge[J]. Journal of South China University of Technology (natural science edition), 2019, 47(4):90-98.
[3] 马长飞, 胡可, 汪正兴, 等. 芜湖长江公路二桥斜置粘滞阻尼器动力性能监测[J]. 世界桥梁, 2019, 47(5):65-68.MA Changfei, HU Ke, WANG Zhengxing, et al. Dynamic behavior monitoring for inclined viscous dampers of Second Wuhu Changjiang River highway brige[J]. World bridges, 2019, 47(5):65-68.
[4] SINGH M P, MORESCHI L M. Optimal placement of dampers for passive response control[J]. Earthquake engineering & structural dynamics, 2002, 31(4):955-976.
[5] IMPOLLONIA N, PALMERI A. Seismic performance of buildings retrofitted with nonlinear viscous dampers and adjacent reaction towers[J]. Earthquake engineering & structural dynamics, 2018, 47(5):1329-1351.
[6] BOUGTEB Y, RAY T. Choice between series and parallel connections of hysteretic system and viscous damper for seismic protection of structures[J]. Earthquake engineering & structural dynamics, 2018, 47(1):237-244.
[7] POLLINI N, LAVAN O, AMIR O. Minimum-cost optimization of nonlinear fluid viscous dampers and their supporting members for seismic retrofitting[J]. Earthquake engineering & structural dynamics, 2017, 46(12):1941-1961.
[8] AYDIN E, BODUROGLU M H, GUNEY D. Optimal damper distribution for seismic rehabilitation of planar building structures[J]. Engineering structures, 2007, 29(2):176-185.
[9] 巫生平, 张超, 房贞政. 斜拉桥粘滞阻尼器设计方案及参数回归分析[J]. 桥梁建设, 2014, 44(5):21-26.WU Shengping, ZHANG Chao, FANG Zhenzheng. Design schemes and parameter regression analysis of viscous dampers for cable-stayed bridge[J]. Bridge construction, 2014, 44(5):21-26.
[10] 王波, 马长飞, 刘鹏飞, 等. 基于随机地震响应的斜拉桥粘滞阻尼器参数优化[J]. 桥梁建设, 2016, 46(3):17-22.WANG Bo, MA Changfei, LIU Pengfei, et al. Parameter optimization of viscous damper for cable-stayed bridge based on stochastic seismic response[J]. Bridge construction, 2016, 46(3):17-22.
[11] LIU Yi, QI Xingjun, WANG Yijian, et al. Seismic mitigation analysis of viscous dampers for curved continuous girder bridge[J]. Applied mechanics and materials, 2011, 90-93:1230-1233.
[12] 李正英, 蒋林均, 李正良. 曲线连续梁桥不同减隔震方案对比分析[J]. 振动与冲击, 2016, 35(10):157-161, 173.LI Zhengying, JIANG Linjun, LI Zhengliang. Comparative analysis of seismic control schemes for continuous curved girder bridges[J]. Journal of vibration and shock, 2016, 35(10):157-161, 173.
[13] 中华人民共和国交通运输部. JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008.Ministry of Transport of the People’s Republic of China. JTG/T B02-01-2008, Guidelines for seismic design of highway bridges[S]. Beijing:China Communications Press, 2008.
[14] 王浩, 王付全, 李爱群, 等. 大跨度缆索支撑桥梁分阶段有限元模型修正[J]. 工程力学, 2009, 26(10):111-116.WANG Hao, WANG Fuquan, LI Aiqun, et al. Multi-phase FE model updating on long-span cable-supported bridges[J]. Engineering mechanics, 2009, 26(10):111-116.
[15] 郭彤, 李爱群, 费庆国, 等. 零阶与一阶优化算法在悬索桥模型修正中的应用对比分析[J]. 振动与冲击, 2007, 26(4):35-38.GUO Tong, LI Aiqun, FEI Qingguo, et al. Application comparison between zero-order and first-order optimization methods in model updating of suspension bridges[J]. Journal of vibration and shock, 2007, 26(4):35-38.

相似文献/References:

[1]袁万城,谷屹童,党新志,等.缓冲型拉索减震支座脉冲地震下减震性能[J].哈尔滨工程大学学报,2018,39(09):1511.[doi:10.11990/jheu.201703003]
 YUAN Wancheng,GU Yitong,DANG Xinzhi,et al.Seismic performance of a buffer cable sliding friction aseismic bearing in pulse-type earthquakes[J].hebgcdxxb,2018,39(2):1511.[doi:10.11990/jheu.201703003]
[2]陈伟,王冠,杜彦良,等.高速铁路连续梁桥近断层地震易损性分析[J].哈尔滨工程大学学报,2020,41(2):212.[doi:10.11990/jheu.201810023]
 CHEN Wei,WANG Guan,DU Yanliang,et al.Vulnerability analysis of the continuous high-speed railway bridge under near-fault earthquake[J].hebgcdxxb,2020,41(2):212.[doi:10.11990/jheu.201810023]

备注/Memo

备注/Memo:
收稿日期:2019-06-24。
基金项目:国家自然科学基金项目(51578151,57978155);国家"万人计划"青年科技人才项目(W03070080);江苏省重点研发计划(BE2018120).
作者简介:王浩,男,教授,博士生导师,"长江学者奖励计划"青年学者.
通讯作者:王浩,E-mail:wanghao1980@seu.edu.cn.
更新日期/Last Update: 2020-03-24