[1]徐旭,何昆鹏,张琳.在水池中精确测量潜器模型运动参数方法[J].哈尔滨工程大学学报,2020,41(7):1010-1015.[doi:10.11990/jheu.201906108]
 XU Xu,HE Kunpeng,ZHANG Lin.Method for accurately measuring motion parameters of underwater vehicle model in a pool[J].hebgcdxxb,2020,41(7):1010-1015.[doi:10.11990/jheu.201906108]
点击复制

在水池中精确测量潜器模型运动参数方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年7期
页码:
1010-1015
栏目:
出版日期:
2020-07-05

文章信息/Info

Title:
Method for accurately measuring motion parameters of underwater vehicle model in a pool
作者:
徐旭 何昆鹏 张琳
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
Author(s):
XU Xu HE Kunpeng ZHANG Lin
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
水下机器人导航定位惯性惯导卡尔曼滤波高通滤波推位导航误差估计零速修正
分类号:
U666.12
DOI:
10.11990/jheu.201906108
文献标志码:
A
摘要:
为了在水池实验中精确测量水下潜器模型运动参数,本文设计了一种成本低、实时性好和测量信息全面的惯性导航测量方法。为获取水下潜器模型的运动状态,本文依据高通滤波后的瞬时线速度和模型运动的角速度及姿态,提出了一种水下潜器是否处于机动状态的判断方案。考虑到水下潜器运动的便利性,当模型被判断为静止后将进行一次朝向调整以更为充分地获取陀螺仪和加速度计常值误差的估计。水池模拟实验表明:采用该方法的测量精度估计比惯导推位方法减少了75%的误差,水池实验也证实了该方法可将上浮定位误差减少至厘米级。

参考文献/References:

[1] LYU Pengfei, HE Bo, GUO Jia, et al. Underwater navigation methodology based on intelligent velocity model for standard AUV[J]. Ocean engineering, 2020, 202:107073.
[2] 秦永元. 惯性导航[M]. 2版. 北京:科学出版社, 2014.QIN Yongyuan. Inertial navigation[M]. 2nd ed. Beijing:Science Press, 2014.
[3] YAO Yiqing, XU Xiaosu, XU Xiang. An IMM-aided ZUPT methodology for an INS/DVL integrated navigation system[J]. Sensors, 2017, 17(9):2030.
[4] 袁书明, 程建华, 马斌. 基于自适应频率估计的舰船瞬时线运动测量方法[J]. 中国惯性技术学报, 2016, 24(5):565-570.YUAN Shuming, CHENG Jianhua, MA Bin. Measurement method for ship instantaneous linear movement based on adaptive frequency estimation[J]. Journal of Chinese inertial technology, 2016, 24(5):565-570.
[5] 孙伟, 孙枫. 基于惯导解算的舰船升沉测量技术[J]. 仪器仪表学报, 2012, 33(1):167-172.SUN Wei, SUN Feng. Measurement technology of ship heave movement based on sins resolving[J]. Chinese journal of scientific instrument, 2012, 33(1):167-172.
[6] 孙伟, 孙枫, 杨琳. 动态环境下舰船瞬时线运动测量方法研究[J]. 系统仿真学报, 2013, 25(4):839-844.SUN Wei, SUN Feng, YANG Lin. Research on measurement method of warship instantaneous line motion under condition of dynamic motion[J]. Journal of system simulation, 2013, 25(4):839-844.
[7] HU Keyong, GUO Zhongwen, CHE Zhaodong, et al. Composition model of complex virtual instrument for ocean observing[J]. Journal of software, 2014, 9(5):1177-1188.
[8] HAM F M, BROWN R G. Observability, eigenvalues, and kalman filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(2):269-273.
[9] 王新龙. 捷联式惯导系统动、静基座初始对准[M]. 西安:西北工业大学出版社, 2013.WANG Xinlong. National defense monograph[M]. Xi’an:Northwestern Polytechnical University Press, 2013.
[10] 王晓雪. 光纤捷联惯导系统初始对准方法研究[D]. 哈尔滨:哈尔滨工程大学, 2016.WANG Xiaoxue. Research on initial alignment method of fiber optic strapdpwn navigationg system[D]. Harbin:Harbin Engineering University, 2016.
[11] 何昆鹏, 许德新, 吴简彤, 等. 船用捷联惯性导航系统在系泊状态下快速初始对准与标定[J]. 哈尔滨工程大学学报, 2008, 29(9):944-950.HE Kunpeng, XU Dexin, WU Jiantong, et al. Initial rapid alignment/calibration of a marine strapdown inertial navigation system in moorage[J]. Journal of Harbin Engineering University, 2008, 29(9):944-950.

相似文献/References:

[1]郭冰洁,徐玉如,李岳明.水下机器人S面控制器的改进粒子群优化[J].哈尔滨工程大学学报,2008,(12):1277.
 GUO Bing-jie,Xu Yu-ru,LI Yue-ming.S surface controller for underwater vehicles using particle swarm optimization[J].hebgcdxxb,2008,(7):1277.
[2]毛宇峰,庞永杰,李 晔,等.速度矢量坐标系下水下机器人动态避障方法[J].哈尔滨工程大学学报,2010,(02):159.
 MAO Yu feng,PANG Yong jie,LI Ye,et al.Using a velocity vector coordinate method for dynamic obstacle avoidance of autonomous underwater vehicles[J].hebgcdxxb,2010,(7):159.
[3]张铭钧,宋炜胥,褚振忠.自主式水下机器人模糊定性建模方法研究[J].哈尔滨工程大学学报,2013,(01):116.[doi:10.3969/j.issn.1006-7043. 201205069]
 ZHANG Mingjun,SONG Weixu,CHU Zhenzhong.Research on the method of fuzzy qualitative modeling for AUV[J].hebgcdxxb,2013,(7):116.[doi:10.3969/j.issn.1006-7043. 201205069]
[4]黄海,张强,张树迪,等.欠驱动AUV自适应编队控制策略[J].哈尔滨工程大学学报,2015,(05):633.[doi:10.3969/j.issn.1006-7043.201402003]
 HUANG Hai,ZHANG Qiang,ZHANG Shudi,et al.Adaptive formation control strategy for under-actuated AUVs[J].hebgcdxxb,2015,(7):633.[doi:10.3969/j.issn.1006-7043.201402003]
[5]赵文德,张杰,赵勇,等.大深度海水浮力调节系统研制[J].哈尔滨工程大学学报,2015,(09):1269.[doi:10.11990/jheu.201407040]
 ZHAO Wende,ZHANG Jie,ZHAO Yong,et al.Development of a deep-sea buoyancy regulating system[J].hebgcdxxb,2015,(7):1269.[doi:10.11990/jheu.201407040]
[6]张荣敏,陈原,高军.无鳍舵矢量推进水下机器人纵向稳定性研究[J].哈尔滨工程大学学报,2017,38(01):133.[doi:10.11990/jheu.201509089]
 ZHANG Rongmin,CHEN Yuan,GAO Jun.Longitudinal handling stability of vectored thrust underwater vehicle without fin and rudder[J].hebgcdxxb,2017,38(7):133.[doi:10.11990/jheu.201509089]
[7]李新飞,马强,袁利毫,等.矢量推进水下机器人的推力分配方法[J].哈尔滨工程大学学报,2018,39(10):1605.[doi:10.11990/jheu.201702042]
 LI Xinfei,MA Qiang,YUAN Lihao,et al.Thrust allocation method of underwater robots with vector propulsion[J].hebgcdxxb,2018,39(7):1605.[doi:10.11990/jheu.201702042]
[8]姚峰,杨超,张铭钧,等.水下机器人-机械手末端精度测量方法及误差分析[J].哈尔滨工程大学学报,2019,40(06):1155.[doi:10.11990/jheu.201805034]
 YAO Feng,YANG Chao,ZHANG Mingjun,et al.End-precision measurement method for autonomous underwater vehicle manipulator systems and its principle error analysis[J].hebgcdxxb,2019,40(7):1155.[doi:10.11990/jheu.201805034]
[9]吴利红,张爱锋,李一平,等.水下机器人试航速度的类物理数值方法预报[J].哈尔滨工程大学学报,2020,41(2):194.[doi:10.11990/jheu.201903073]
 WU Lihong,ZHANG Aifeng,LI Yiping,et al.Prediction of autonomous underwater vehicle cruising velocity using a physics-based numerical method[J].hebgcdxxb,2020,41(7):194.[doi:10.11990/jheu.201903073]
[10]张伟,王乃新,魏世琳,等.水下无人潜航器集群发展现状及关键技术综述[J].哈尔滨工程大学学报,2020,41(2):289.[doi:10.11990/jheu.201909039]
 ZHANG Wei,WANG Naixin,WEI Shilin,et al.Overview of unmanned underwater vehicle swarm development status and key technologies[J].hebgcdxxb,2020,41(7):289.[doi:10.11990/jheu.201909039]

备注/Memo

备注/Memo:
收稿日期:2019-06-29。
基金项目:航空科学基金项目(实验室类)(201658P6007);重点实验室装备预先研究基金项目(614250601031711).
作者简介:徐旭,男,博士研究生;何昆鹏,男,副研究员.
通讯作者:何昆鹏,E-mail:hekunpeng@hrbeu.edu.cn.
更新日期/Last Update: 2020-08-15