[1]金松,李忠诚,贡金鑫,等.预应力混凝土安全壳内压易损性及性能评估[J].哈尔滨工程大学学报,2020,41(6):913-921.[doi:10.11990/jheu.201907103]
 JIN Song,LI Zhongcheng,GONG Jinxin,et al.Fragility evaluation of a prestressed concrete containment vessel under internal pressure[J].hebgcdxxb,2020,41(6):913-921.[doi:10.11990/jheu.201907103]
点击复制

预应力混凝土安全壳内压易损性及性能评估(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年6期
页码:
913-921
栏目:
出版日期:
2020-06-05

文章信息/Info

Title:
Fragility evaluation of a prestressed concrete containment vessel under internal pressure
作者:
金松12 李忠诚34 贡金鑫12 董占发34 蓝天云3
1. 大连理工大学 建设工程学部, 辽宁 大连 116024;
2. 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116024;
3. 深圳中广核工程设计有限公司, 广东 深圳 518031;
4. 核电安全监控技术与装备国家重点实验室, 广东 深圳 518172
Author(s):
JIN Song12 LI Zhongcheng34 GONG Jinxin12 DONG Zhanfa34 LAN Tianyun3
1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;
2. State Key Laboratory of Costal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;
3. China General Nuclear Power Design Co., Ltd. (Shenzhen), Shenzhen 518031, China;
4. State Key Laboratory of Nuclear Power Safety Monitoring and Equipment, Shenzhen 518172, China
关键词:
安全壳有限元模型拉丁超立方抽样功能性失效结构性失效易损性内压承载力性能指标
分类号:
TU378
DOI:
10.11990/jheu.201907103
文献标志码:
A
摘要:
为研究安全壳在严重事故工况下内压易损性及其性能,本文采用非线性有限元方法分析了预应力混凝土安全壳在严重事故工况下的易损性,建立了精细化安全壳三维有限元分析模型,同时考虑材料非线性以及混凝土受拉刚化效应。采用拉丁超立方抽样技术产生30个安全壳随机样本,分析了安全壳整体功能性失效、结构性失效及不同变截面位置处功能性失效对应的易损性,并采用概率评价方法对安全壳严重事故工况下性能进行评估。研究结果表明:安全壳破坏由功能性失效控制,安全壳功能性失效内压承载力与结构性失效内压承载力相差较大。变截面位置破坏次序环梁底部、环梁顶部、穹顶变截面部位、截椎体部位。安全壳的下限和上限内压承载力分别为1.234 9 MPa和1.362 6 MPa。安全壳在事故工况下的条件失效概率为0.01,满足严重事故工况下要求的性能指标。

参考文献/References:

[1] PRINJA N K, OGUNBADEJO A, SADEGHI J, et al. Structural reliability of pre-stressed concrete containments[J]. Nuclear engineering and design, 2017, 323:235-244.
[2] IAEA. Assessment and management of ageing of major nuclear power plant components important to safety:concrete containment building. IAEA-TECDOC-1025[R]. Vienna, Austria:IAEA, 1998.
[3] BASHA S M, SINGH R K, PATNAIK R, et al. Predictions of ultimate load capacity for pre-stressed concrete containment vessel model with BARC finite element code ULCA[J]. Annals of nuclear energy, 2003, 30(4):437-471.
[4] BRAVERMAN J, MORANTE R, HOFMAYER C, et al. Demonstrating structural adequacy of nuclear power plant containment structures for beyond design-basis pressure loadings[C]//Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington, USA, 2010.
[5] CHAKRABORTY M K, ACHARYA S, PISHARADY A S, et al. Assessment of ultimate load capacity of concrete containment structures against structural collapse[J]. Nuclear engineering and design, 2017, 323:417-426.
[6] HESSHEIMER M F, KLAMERUS E W, LAMBERT L D, et al. Overpressurization test of a 1:4-scale prestressed concrete containment vessel model. NUREG/CR-6810[R]. Washington DC, USA:Sandia National Laboratories, 2003.
[7] PARMAR R M, SINGH T, THANGAMANI I, et al. Over-pressure test on BARCOM pre-stressed concrete containment[J]. Nuclear engineering and design, 2014, 269:177-183.
[8] TWIDALE D, CROWDER R. Sizewell ‘B’-a one tenth scale containment model test for the UK PWR programme[J]. Nuclear engineering and design, 1991, 125(1):85-93.
[9] RIZKALLA S H, SIMMONDS S H, MACGREGOR J G. Prestressed concrete containment model[J]. Journal of structural engineering, 1984, 110(4):730-743.
[10] 赵树明, 林松涛, 王永焕. 秦山核电二期安全壳结构整体性试验[J]. 工业建筑, 2003, 33(9):38-43.ZHAO Shuming, LIN Songtao, WANG Yonghuan. The structural integrity test of containment for Qinshan nuclear power plant[J]. Industrial construction, 2003, 33(9):38-43.
[11] KWAK H G, KIM J H. Numerical models for prestressing tendons in containment structures[J]. Nuclear engineering and design, 2006, 236(10):1061-1080.
[12] HORA Z, PATZÁK B. Analysis of long-term behaviour of nuclear reactor containment[J]. Nuclear engineering and design, 2007, 237(3):253-259.
[13] HU H T, LIN Junxu. Ultimate analysis of PWR prestressed concrete containment under long-term prestressing loss[J]. Annals of nuclear energy, 2016, 87:500-510.
[14] LEE H P, CHOUN Y S, SEO J M, et al. Nonlinear finite element analysis of containment vessel by considering the tension stiffening effect[J]. Nuclear engineering and technology, 2004, 36(6):512-527.
[15] SAUDY A M, AWAD A, ELGOHARY M M. Ultimate pressure capacity of ACRTM containment structure[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, China, 2005.
[16] LUNDQVIST P, NILSSON L O. Evaluation of prestress losses in nuclear reactor containments[J]. Nuclear engineering and design, 2011, 241(1):168-176.
[17] SHOKOOHFAR A, RAHAI A. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model[J]. Nuclear engineering and design, 2016, 298:41-50.
[18] TONG L, ZHOU X, CAO X. Ultimate pressure bearing capacity analysis for the prestressed concrete containment[J]. Annals of nuclear energy, 2018, 121:582-593.
[19] HUANG Xu, KWON O S, BENTZ E, et al. Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase[J]. Nuclear engineering and design, 2017, 314:82-92.
[20] ZHANG Chunyu, CHEN Peng, ZHANG Juanhua, et al. Evaluation of the structural integrity of the CPR1000 PWR containment under steam explosion accidents[J]. Nuclear engineering and design, 2014, 278:632-643.
[21] ASME. 2007 ASME Boiler & Pressure Vessel Code:III, division 2, code for concrete containments-rules for construction of nuclear facility components[R]. New York, NY:American Society of Mechanical Engineers, 2007.
[22] HWANG H, ELLINGWOOD B, SHINOZUKA M, et al. Probability-based design criteria for nuclear plant structures[J]. Journal of structural engineering, 1987, 113(5):925-942.
[23] MORI Y, ELLINGWOOD B. Methodology for reliability based condition assessment. Application to concrete structures in nuclear plants[R]. Washington, DC:Nuclear Regulatory Commission, 1993:587-588.
[24] ELLINGWOOD B. Probabilistic based safety checking for nuclear plant structures. NUREG/CR-3628[R]. Upton, NY:Brookhaven National Laboratory, 1984.
[25] ELLINGWOOD B. Probabilistic descriptions of resistance of safety-related nuclear structures. NUREG/CR-3341[R]. Washington, DC:National Bureau of Standards, 1983.
[26] PANDEY M D. Reliability-based assessment of integrity of bonded prestressed concrete containment structures[J]. Nuclear engineering and design, 1997, 176(3):247-260.
[27] KIM S H, CHOI M S, JOUNG J Y, et al. Long-term reliability evaluation of nuclear containments with tendon force degradation[J]. Nuclear engineering and design, 2013, 265:582-590.
[28] WANG Dayang, WU Chengqing, ZHANG Yongshan, et al. Elastic-plastic behavior of AP1000 nuclear island structure under mainshock-aftershock sequences[J]. Annals of nuclear energy, 2019, 123:1-17.
[29] EN. EN1992-1-1:2010, Eurocode 2:design of concrete structures-part 1-1:general rules and rules for buildings[S]. Brussels, 2010.
[30] ALHANAEE S, YI Yongsun, SCHIFFER A. Ultimate pressure capacity of nuclear reactor containment buildings under unaged and aged conditions[J]. Nuclear engineering and design, 2018, 335:128-139.
[31] ZHOU Lei, LI Jianbo, ZHONG Hong, et al, Fragility comparison analysis of CPR1000 PWR containment subjected to internal pressure[J]. Nuclear engineering and design, 2013, 330:250-264.
[32] HU H T, LIN Y H. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure[J]. International journal of pressure vessels and piping, 2006, 83(3):161-167.
[33] ABAQUS-6.12. ABAQUS 6.12, User documentation-theory manual[M]. Providence, RI, USA:Dassault Systems Simulia, Corp., 2012.
[34] JCSS (Joint Committee on Structural Safety). JESS probabilistic model code-part 3:material properties[R].[S.l.],2000.
[35] HESSHEIMER M F, DAMERON R A. Containment integrity research at Sandia national laboratories-an overview. NUREG/CR-6906[R]. Washington, USA:Division of Fuel, Engineering & Radiological Research Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2006.
[36] U.S. Nuclear Regulatory Commission. Containment structural integrity evaluation for internal pressure loadings above design basis pressure. Regulatory guide 1.216[R]. US:U.S. Nuclear Regulatory Commission, 2010.
[37] 赵国藩, 金伟良, 贡金鑫. 结构可靠度理论[M]. 北京:中国建筑工业出版社, 2000.ZHAO Guofan, JIN Weiliang, GONG Jinxin. Structure reliability theory[M]. Beijing:China Architecture & Building Press, 2000.
[38] NRC. Severe accident risks:an assessment for five U.S. nuclear power plants, part II:summary of plant results. NUREG-1150[R]. Washington:U.S. Nuclear Regulatory Commission.
[39] HOSEYNI S M, HOSEYNI S M, YOUSEFPOUR F, et al. Probabilistic analysis of containment structural performance in severe accidents[J]. International journal of system assurance engineering and management, 2017, 8(3):625-634.
[40] KLAMERUS E W, BOHN M P, WESLEY D A, et al. Containment performance of prototypical reactor containments subjected to severe accident conditions. NUREG/CR-6433[R]. Albuquerque, NM:Sandia National Laboratories, 1996.

相似文献/References:

[1]张明杰,赵又群,杜现斌,等.机械弹性车轮疲劳寿命及其影响因素研究[J].哈尔滨工程大学学报,2016,37(11):1560.[doi:10.11990/jheu.201509026]
 ZHANG Mingjie,ZHAO Youqun,DU Xianbin,et al.Fatigue life and influencing factors of a mechanical elastic wheel[J].hebgcdxxb,2016,37(6):1560.[doi:10.11990/jheu.201509026]
[2]庞于涛,王建国,欧阳辉,等.采用钢纤维混凝土的连续钢构桥地震易损性分析[J].哈尔滨工程大学学报,2018,39(04):687.[doi:10.11990/jheu.201701020]
 PANG Yutao,WANG Jianguo,OUYANG Hui,et al.Seismic fragility analysis of a continuous rigid frame bridge made from steel fiber reinforced concrete[J].hebgcdxxb,2018,39(6):687.[doi:10.11990/jheu.201701020]
[3]赵品,叶见曙.波形钢腹板箱梁桥面板横向温度效应分析[J].哈尔滨工程大学学报,2019,40(05):974.[doi:10.11990/jheu.201712022]
 ZHAO Pin,YE Jianshu.Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J].hebgcdxxb,2019,40(6):974.[doi:10.11990/jheu.201712022]

备注/Memo

备注/Memo:
收稿日期:2019-07-22。
基金项目:国家自然科学基金项目(51678104).
作者简介:金松,男,博士研究生;贡金鑫,男,教授,博士生导师.
通讯作者:贡金鑫,E-mail:jinxingong@163.com.
更新日期/Last Update: 2020-07-22