[1]李红霞,王莹,黄一,等.冰区浮式核电平台定位系统优化设计[J].哈尔滨工程大学学报,2021,42(2):193-199.[doi:10.11990/jheu.201910058]
 LI Hongxia,WANG Ying,HUANG Yi,et al.Optimal design of positioning system for floating nuclear power platform in icy areas[J].Journal of Harbin Engineering University,2021,42(2):193-199.[doi:10.11990/jheu.201910058]
点击复制

冰区浮式核电平台定位系统优化设计(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期数:
2021年2期
页码:
193-199
栏目:
出版日期:
2021-02-05

文章信息/Info

Title:
Optimal design of positioning system for floating nuclear power platform in icy areas
作者:
李红霞 王莹 黄一 季顺迎
大连理工大学 运载工程与力学学部, 辽宁 大连 116024
Author(s):
LI Hongxia WANG Ying HUANG Yi JI Shunying
Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China
关键词:
核电平台海洋结构物冰载荷波浪载荷半张紧式系泊系泊参数连接机构时域耦合动力响应
分类号:
TL48, U661
DOI:
10.11990/jheu.201910058
文献标志码:
A
摘要:
针对冰区浮式核电平台定位问题,根据平台功能及海洋环境条件,完成分离式冰区核电平台总体设计、系泊方案设计、连接机构设计,依据数值仿真结果对系泊系统及连接机构进行了优化。依据离散元理论,构造了海冰离散单元模型,研究了海冰与浮式核电平台相互作用过程;依据势流理论,采用边界元数值计算方法,研究了浮式核电平台在波浪中的受力与运动性能;依据海洋结构物动力学理论,分别考虑风浪流联合作用、风冰流联合作用2种情况,对平台动力响应在时域内进行耦合分析,给出浮式核电平台在不同环境载荷作用下的动张力及平台偏移量;在此基础上,分析参数变化对定位系统的影响规律,进行系泊系统及连接机构优化设计。研究结果表明:增加系泊缆数量可减小平台偏移及最大动张力;在系泊缆数量不变的情况下,四点式系泊的动张力小于均布式系泊动张力;机械分离式连接机构设计优于弹簧阻尼连接机构设计方案。

参考文献/References:

[1] ZVEREV D L, FADEEV Y P, PAKHOMOV A N, et al. Nuclear power plants for the icebreaker fleet and power generation in the arctic region:development experience and future prospects[J]. Atomic energy, 2019, 125(6):359-364.
[2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
[3] BUONGIORNO J, JUREWICZ J, GOLAY M, et al. The offshore floating nuclear plant concept[J]. Nuclear technology, 2016, 194(1):1-14.
[4] ZHANG Y, BUONGIORNO J, GOLAY M, et al. Safety analysis of a 300-MW(electric) offshore floating nuclear power plant in marine environment[J]. Nuclear Technology, 2018, 203(2):129-145.
[5] LEE K H, KIM M G, LEE J I, et al. Recent advances in ocean nuclear power plants[J]. Energies, 2015, 8(10):11470-11492.
[6] HU Miao, GUO Yun. The core instability analysis under ocean condition for offshore floating nuclear power plant with neutron coupling based on multi-point model[J]. Annals of nuclear energy, 2018, 112:170-176.
[7] 薛彦卓, 倪宝玉. 极地船舶与浮体结构物力学问题研究综述[J]. 哈尔滨工程大学学报, 2016, 37(1):36-40.Xue Yanzhuo, Ni Baoyu. Review of mechanical issues for polar region ships and floating structures[J]. Journal of Harbin Engineering University, 2016, 37(1):36-40.
[8] HUANG Y. Model test study of the nonsimultaneous failure of ice before wide conical structures[J]. Cold Regions Science and Technology, 2010, 63(3):87-96.
[9] JI Shunying, LI Zilin, LI Chunhua, et al. Discrete element modeling of ice loads on ship hulls in broken ice fields[J]. Acta oceanologica sinica, 2013, 32(11):50-58.
[10] LI Baohui, LI Hai, LIU Yu, et al. A modified discrete element model for sea ice dynamics[J]. Acta oceanologica sinica, 2014, 33(1):56-63.
[11] JI Shunying, WANG Shuailin. A coupled discrete-finite element method for the ice-induced vibrations of a conical jacket platform with a GPU-based parallel algorithm[J]. International journal of computational methods, 2020, 17(4):1850147.
[12] GHAFARI H, DARDEL M. Parametric study of catenary mooring system on the dynamic response of the semi-submersible platform[J]. Ocean engineering, 2018, 153:319-332.
[13] 康庄, 付森, 袁洪涛, 等. SPAR平台张紧式与半张紧式系泊性能比较[J]. 船舶与海洋工程, 2012, 34(4):15-21.KANG Zhuang, FU Sen, YUAN Hongtao, et al. Comparative study on the performance of tensioned and semi-tensioned mooring systems for a spar platform[J]. Naval architecture and ocean engineering, 2012, 34(4):15-21.
[14] 刘元丹, 刘敬喜, 谭安全. 单点系泊FPSO风浪流载荷下运动及其系泊力研究[J]. 船海工程, 2011, 40(6):146-149.LIU Yuandan, LIU Jingxi, TAN Anquan. The motion and mooring forces of a turret moored FPSO with the wind, waves and currents loads[J]. Ship & ocean engineering, 2011, 40(6):146-149.
[15] 乔东生, 漆徐良, 闫俊,等. 张紧式锚泊系统松弛-张紧过程冲击张力分析[J]. 哈尔滨工程大学学报, 2020, 41(2):206-211.Qiao Dongsheng, Qi Xuliang, Yan Jun, et al. Analysis of snap loading of a taut mooring system in the slack-taut process[J]. Journal of Harbin Engineering University, 2020, 41(2):206-211.
[16] HOU Huimin, DONG Guohai, XU Tiaojian, et al. Dynamic analysis of embedded chains in mooring line[J]. Polish maritime research, 2018, 25(1):83-97.
[17] MONTASIR O A, YENDURI A, KURIAN V J. Mooring system optimisation and effect of different line design variables on motions of truss spar platforms in intact and damaged conditions[J]. China ocean engineering, 2019, 33(4):385-397.
[18] 李想, 李红霞, 黄一. 核电平台连接机构设计与运动响应分析[J]. 中国舰船研究, 2020, 15(1):152-161.LI Xiang, LI Hongxia, HUANG Yi. Design of connecting mechanism and motion response analysis on nuclear power platform[J]. Chinese journal of ship research, 2020, 15(1):152-161.
[19] 柯长青, 王蔓蔓. 基于CryoSat-2数据的2010-2017年北极海冰厚度和体积的季节与年际变化特征[J]. 海洋学报, 2018, 40(11):1-13.KE Changqing, WANG Manman. Seasonal and interannual variation of thinkness and volume of the Arctic sea ice based on CryoSat-2 during 2010-2017[J]. Haiyang xuebao, 2018, 40(11):1-13.

相似文献/References:

[1]滕斌,金瑞佳,勾莹.波浪力计算中高阶边界元的改进方法[J].哈尔滨工程大学学报,2012,(11):1321.[doi:10.3969/j.issn.1006-7043.201112072]
 TENG Bin,JIN Ruijia,GOU Ying.An improved method for the calculation of wave force by HOBEM[J].Journal of Harbin Engineering University,2012,(2):1321.[doi:10.3969/j.issn.1006-7043.201112072]

备注/Memo

备注/Memo:
收稿日期:2019-10-23。
基金项目:国家重点研发计划(2017YFE0111400,2018YFC0310502);国家自然科学基金项目(51779042);中央高校基本科研业务费项目(DUT2019TD35).
作者简介:李红霞,女,副教授,硕士生导师.
通讯作者:李红霞,E-mail:li_hx@dlut.edu.cn.
更新日期/Last Update: 2021-02-27