[1]郑崇伟,李崇银.海洋强国视野下的“海上丝绸之路”海洋新能源评估[J].哈尔滨工程大学学报,2020,41(2):175-183.[doi:10.11990/jheu.201911007]
 ZHENG Chongwei,LI Chongyin.Evaluation of new marine energy for the Maritime Silk Road from the perspective of maritime power[J].hebgcdxxb,2020,41(2):175-183.[doi:10.11990/jheu.201911007]
点击复制

海洋强国视野下的“海上丝绸之路”海洋新能源评估(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
175-183
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Evaluation of new marine energy for the Maritime Silk Road from the perspective of maritime power
作者:
郑崇伟123 李崇银2
1. 海军大连舰艇学院 航海系, 辽宁 大连 116018;
2. 中国科学院大气物理研究所LASG国家重点实验室, 北京 100029;
3. 中国海洋大学 山东省海洋工程重点实验室, 山东 青岛 266100
Author(s):
ZHENG Chongwei123 LI Chongyin2
1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), Institute of Atmospheric Physics, the Chinese Academy of Sciences, Beijing 100029, China;
2. Navigation Department, Dalian Naval Academy, Dalian 116018, China;
3. Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China
关键词:
海上丝绸之路海洋新能源评估气候特征等级区划短期预报中长期预估
分类号:
P743.2
DOI:
10.11990/jheu.201911007
文献标志码:
A
摘要:
21世纪海上丝绸之路"("海上丝路")是构建"人类命运共同体"的重要举措,然而沿线薄弱的电力供应能力严重制约其高效展开。海洋新能源评估与开发既是破解"海上丝路"能源困局的最佳选择之一,也是推进互联互通、展开国际合作的良好契机,还是应对气候变化和常规能源紧缺的有效措施。本文首先论述海洋新能源在海洋强国建设中的重要作用,梳理资源评估现状,探析资源评估难点:资源气候特征详查、等级区划、与天文地球因子的相关、资源短期预报、长期演变规律、中长期预估、关键节点资源评价,并提供应对措施,为资源开发的精准选址、业务化运行和中长期规划提供科学依据,促进海洋新能源开发的产业化、规模化。最后展望海洋新能源数据集建设、人才培养与学科体系建设,为各国参与"海上丝路"建设的决策、科研、工程人员提供数据保障、决策支持。

参考文献/References:

[1] ZHENG Chongwei, LI Chongyin, WU Hailang, et al. 21st century maritime silk road:construction of remote islands and reefs[M]. Singapore:Springer, 2019.
[2] ZHENG Chongwei, XIAO Ziniu, ZHOU Wen, et al. 21st century maritime silk road:a peaceful way forward[M]. Singapore:Springer, 2018.
[3] ZHENG Chongwei, XU Jianjun, ZHAN Chao, et al. 21st century maritime silk road:wave energy resource evaluation[M]. Singapore:Springer, 2020.
[4] 蒋瑜, 邬明权, 黄长军, 等. 2000-2019年中国海外电力项目信息数据集[J/OL]. 中国科学数据, 2019. (2019-12-28). http://www.csdata.org/p/374/.DOI:10.11922/csdata.2019.0069.zh.JIANG Yu, WU Mingquan, Huang Changjun, et al. A dataset of China’s overseas power projects (2000-2019)[J/OL]. China scientific data, 2019. (2019-12-28). http://www.csdata.org/p/374/.DOI:10.11922/csdata.2019.0069.zh.
[5] 郑崇伟, 李崇银. 关于海洋新能源选址的难点及对策建议——以波浪能为例[J]. 哈尔滨工程大学学报, 2018, 39(2):200-206.ZHENG Chongwei, LI Chongyin. Overview of site selection difficulties for marine new energy power plant and suggestions:wave energy case study[J]. Journal of Harbin Engineering University, 2018, 39(2):200-206.
[6] 郑崇伟, 高成志, 高悦. "21世纪海上丝绸之路"波浪能的气候特征及变化趋势[J]. 太阳能学报, 2019, 40(6):1487-1493.ZHENG Chongwei, GAO Chengzhi, GAO Yue. Climate feature and long term trend analysis of wave energy resource of 21st Century Maritime Silk Road[J]. Acta energiae solaris sinica, 2019, 40(6):1487-1493.
[7] 郑崇伟. 南海波浪能资源与其他清洁能源的优缺点比较研究[J]. 亚热带资源与环境学报, 2011, 6(3):76-81.ZHENG Chongwei. Wave energy and other renewable energy resources in South China Sea:Advantages and disadvantages[J]. Journal of subtropical resources and environment, 2011, 6(3):76-81.
[8] LIANG Bingchen, SHAO Zhuxiao, WU Guoxiang, et al. New equations of wave energy assessment accounting for the water depth[J]. Applied energy, 2017, 188:130-139.
[9] LIANG Bingchen, GAO Huijun, SHAO Zhuxiao. Characteristics of global waves based on the third-generation wave model SWAN[J]. Marine structures, 2019, 64:35-53.
[10] 郑崇伟. 21世纪海上丝绸之路:斯里兰卡海域的波浪能评估及决策建议[J]. 哈尔滨工程大学学报, 2018, 39(4):614-621.ZHENG Chongwei. 21st century maritime silk road:wave energy evaluation and decision and proposal of the Sri Lankan waters[J]. Journal of Harbin Engineering University, 2018, 39(4):614-621.
[11] 郑崇伟. 21世纪海上丝绸之路:关键节点的能源困境及应对[J]. 太平洋学报, 2018, 26(7):71-78.ZHENG Chongwei. Energy predicament and countermeasures on key junctions of the 21st century maritime silk road[J]. Pacific journal, 2018, 26(7):71-78.
[12] ZHENG Chongwei, LI Chongyin, PAN Jing, et al. An overview of global ocean wind energy resource evaluations[J]. Renewable and sustainable energy reviews, 2016, 53:1240-1251.
[13] YOUM I, SARR J, SALL M, et al. Analysis of wind data and wind energy potential along the northern coast of Senegal[J]. Renewable energy review, 2005, 8:95-108.
[14] CAPPS S B, ZENDER C S. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting[J]. Journal of geophysical research:atmospheres, 2010, 115(D9):D09101, DOI:10.1029/2009JD012679.
[15] CARVALHO D, ROCHA A, GÓMEZ-GESTEIRA M, et al. Offshore wind energy resource simulation forced by different reanalyses:comparison with observed data in the Iberian Peninsula[J]. Applied energy, 2014, 134:57-64.
[16] CHADEE X T, CLARKE R M. Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data[J]. Renewable and sustainable energy reviews, 2014, 30:45-58.
[17] ZHENG Chongwei, ZHUANG Hui, LI Xin, et al. Wind energy and wave energy resources assessment in the East China Sea and South China Sea[J]. Science China technological sciences, 2012, 55(1):163-173.
[18] ZHENG Chongwei, PAN Jing, LI Jiaxun. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009[J]. Ocean engineering, 2013, 65:39-48.
[19] 郑崇伟, 李崇银. 中国南海岛礁建设:风力发电、海浪发电[J]. 中国海洋大学学报, 2015, 45(9):7-14.ZHENG Chongwei, LI Chongyin. Development of the islands and reefs in the South China Sea:wind power and wave power generation[J]. Periodical of Ocean University of China, 2015, 45(9):7-14.
[20] 郑崇伟, 李崇银. 中国南海岛礁建设:重点岛礁的风候、波候特征分析[J]. 中国海洋大学学报, 2015, 45(9):1-6.ZHENG Chongwei, LI Chongyin. Development of the islands and reefs in the South China Sea:wind climate and wave climate analysis[J]. Periodical of Ocean University of China, 2015, 45(9):1-6.
[21] CHEN Xinping, WANG Kaimin, ZHANG Zenghai, et al. An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea[J]. Energy, 2017, 134:789-801.
[22] LIU Yichao, CHEN Daoyi, LI Sunwei, et al. Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling[J]. Energy, 2018, 160:582-596.
[23] ALBANI A, IBRAHIM M Z, YONG K H. Influence of the ENSO and monsoonal season on long-term wind energy potential in Malaysia[J]. Energies, 2018, 11(11):2965, DOI:10.3390/en11112965.
[24] 蒋洁, 刘永学, 李满春, 等. 南海岛礁风能资源及风力发电评价——基于QuikSCAT风场数据与Landsat ETM+影像[J]. 资源科学, 2014, 36(1):139-147.JIANG Jie, LIU Yongxue, LI Manchun, et al. Wind energy resources and wind power generation on islands and reefs in the South China Sea Based on QuikSCAT wind data and Landsat ETM+images[J]. Resources science, 2014, 36(1):139-147.
[25] 谌玲, 许武, 刘光远, 等. 西沙风能资源评估与"五十年一遇"最大风速分析[J]. 电力建设, 2014, 35(7):131-135.CHEN Ling, XU Wu, LIU Guangyuan, et al. Wind resource assessment and extreme wind of 50-year recurrence in Xisha[J]. Electric power construction, 2014, 35(7):131-135.
[26] 孙玉婷, 粘新悦, 闵锦忠, 等. 中国沿海风能分布特征及其影响因子的数值模拟[J]. 大气科学学报, 2017, 40(6):823-832.SUN Yuting, NIAN Xinyue, MIN Jinzhong, et al. Distribution characteristics of wind energy along the coast of China and numerical simulation on impact factors[J]. Transactions of atmospheric sciences, 2017, 40(6):823-832.
[27] WAEWSAK J, LANDRY M, GAGNON Y. Offshore wind power potential of the Gulf of Thailand[J]. Renewable energy, 2015, 81:609-626.
[28] CHANG Rui, ZHU Rong, BADGER M, et al. Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea[J]. Remote sensing, 2015, 7(1):467-487.
[29] WAN Yong, FAN Chenqing, DAI Yongshou, et al. Assessment of the joint development potential of wave and wind energy in the South China Sea[J]. Energies, 2018, 11(2):398, DOI:10.3390/en11020398.
[30] LIP-WAH H, IBRAHIM S, KASMIN S, et al. Review of offshore wind energy assessment and siting methodologies for offshore wind energy planning in Malaysia[J]. American international journal of contemporary research, 2012, 2(12):72-85.
[31] NAYYAR Z A, ZAIGHAM N A. Assessment of wind potential in southeastern part of Pakistan along coastal belt of Arabian sea[J]. Arabian journal for science and engineering, 2013, 38(7):1917-1927.
[32] MURALI R M, VIDYA P J, MODI P, et al. Site selection for offshore wind farms along the Indian coast[J]. Indian journal of geo-marine sciences, 2014, 43(7):1401-1406.
[33] CONTESTABILE P, LAURO E D, GALLI P, et al. Offshore wind and wave energy assessment around Malè and Magoodhoo island (Maldives)[J]. Sustainability, 2017, 9(4):613.
[34] PATEL R P, NAGABABU G, JANI H K, et al. Wind and Wave energy resource assessment along shallow water region of Indian coast[C]//Twelve International Conference on Thermal Engineering:Theory and Applications. Gandhinagar, India, 2019.
[35] KUMAR S V V A, NAGABABU G, KUMAR R. Comparative study of offshore winds and wind energy production derived from multiple scatterometers and met buoys[J]. Energy, 2019, 185:599-611.
[36] YIP C M A, GUNTURU U B, STENCHIKOV G L. Wind resource characterization in the Arabian Peninsula[J]. Applied energy, 2016, 164:826-836.
[37] YANG Shaobo, DUAN Shanhua, FAN Linlin, et al. 10-year wind and wave energy assessment in the North Indian Ocean[J]. Energies, 2019, 12(20):3835, DOI:10.3390/en12203835.
[38] 郑崇伟, 李崇银, 杨艳, 等. 巴基斯坦瓜达尔港的风能资源评估[J]. 厦门大学学报(自然科学版), 2016, 55(2):210-215.ZHENG Chongwei, LI Chongyin, YANG Yan, et al. Analysis of wind energy resource in the Pakistan’s Gwadar Port[J]. Journal of Xiamen University (Natural Science), 2016, 55(2):210-215.
[39] 郑崇伟, 高悦, 陈璇. 巴基斯坦瓜达尔港风能资源的历史变化趋势及预测[J]. 北京大学学报(自然科学版), 2017, 53(4):617-626.ZHENG Chongwei, GAO Yue, CHEN Xuan. Climatic long term trend and prediction of the wind energy resource in the Gwadar Port[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4):617-626.
[40] 郑崇伟. 21世纪海上丝绸之路:风能资源详查[J]. 哈尔滨工程大学学报, 2018, 39(1):16-22.ZHENG Chongwei. Wind energy evaluation of the 21st century maritime silk road[J]. Journal of Harbin Engineering University, 2018, 39(1):16-22.
[41] 郑崇伟. 21世纪海上丝绸之路:风能的长期变化趋势[J]. 哈尔滨工程大学学报, 2018, 39(3):399-405.ZHENG Chongwei. Wind energy trend in the 21st century maritime silk road[J]. Journal of Harbin Engineering University, 2018, 39(3):399-405.
[42] 郑崇伟, 潘静. 全球海域风能资源评估及等级区划[J]. 自然资源学报, 2012, 27(3):364-371.ZHENG Chongwei, PAN Jing. Wind energy resources assessment in global ocean[J]. Journal of natural resources, 2012, 27(3):364-371.
[43] LANGODAN S, VISWANADHAPALLI Y, DASARI H P, et al. A high-resolution assessment of wind and wave energy potentials in the Red Sea[J]. Applied energy, 2016, 181:244-255.
[44] 周川, 黄亚珏. 广东某海上风电场波浪能资源分析[J]. 南方能源建设, 2016, 3(4):119-122.ZHOU Chuan, HUANG Yajue. Assessment of wave energy resources in an offshore wind farm of Guangdong[J]. Southern energy construction, 2016, 3(4):119-122.
[45] National Renewable Energy Laboratory (NREL). QuikSCAT Annual wind power density at 10m[EB/OL]. 2005. http://en.openei.org/w/index.php?title=File:QuikSCAT-_Annual_Wind_Power_Density_at_10m.pdf&page=1.
[46] ZHENG Chongwei, XIAO Ziniu, PENG Yuehua, et al. Rezoning global offshore wind energy resources[J]. Renewable energy, 2018, 129:1-11.
[47] ZHENG Chongwei, LI Chongyin, XU Jianjun. Micro-scale classification of offshore wind energy resource-a case study of the New Zealand[J]. Journal of cleaner production, 2019, 226:133-141.
[48] 李崇银. 大气低频振荡[M]. 北京:气象出版社, 1991:1-4.LI Chongyin. Atmospheric low-frequency oscillation[M]. Beijing:China Meteorological Press, 1991:1-4.
[49] 李崇银. 气候动力学引论[M]. 2版. 北京:气象出版社, 2000:1-5.LI Chongyin. Introduction to climate dynamics[M]. 2nd ed. Beijing:China Meteorological Press, 2000:1-5.
[50] 李崇银, 周亚萍. 热带大气季节内振荡和ENSO的相互关系[J]. 地球物理学报, 1994, 37(1):17-26.LI Chongyin, ZHOU Yaping. Relationship between intraseasonal oscillation in the tropioal atmosphere and ENSO[J]. Chinese journal of geophysics, 1994, 37(1):17-26.
[51] 李崇银. 频繁的强东亚大槽活动与El Niño的发生[J]. 中国科学(D辑), 1988, 18(6):667-674.LI Chongyin. Frequent strong east Asian trough activity and the occurrence of El Niño[J]. Science in China (Series D), 1988, 18(6):667-674.
[52] ZHENG Chongwei, LI Chongyin, LI Xin. Recent decadal trend in the north Atlantic wind energy resources[J]. Advances in meteorology, 2017:7257492, DOI:10.1155/2017/7257492.
[53] FOCKEN U, LANGE M, WALDL H P. Previento-a wind power prediction system with an innovative upscaling algorithm[C]//Proceedings of the European Wind Energy Conference. Copenhagen, Denmark, 2001:826-829.
[54] YU Wei, BENOIT R, GIRARD C, et al. Wind Energy Simulation Toolkit (WEST):a wind mapping system for use by the wind-energy industry[J]. Wind engineering, 2006, 30(1):15-33.
[55] 郑崇伟, 周林, 宋帅, 等. 中国海风能密度预报[J]. 广东海洋大学学报, 2014, 31(1):71-77.ZHENG Chongwei, ZHOU Lin, SONG Shuai, et al. Forecasting of the China Sea wind energy density[J]. Journal of Guangdong Ocean University, 2014, 31(1):71-77.
[56] ZHENG Chongwei, LI Xueyan, LUO Xia, et al. Projection of future global offshore wind energy resources using CMIP data[J]. Atmosphere-ocean, 2019, 57(2):134-148.
[57] 郑崇伟, 李崇银. 21世纪海上丝绸之路:海洋新能源大数据建设研究——以波浪能为例[J]. 海洋开发与管理, 2017, 34(12):61-65.ZHENG Chongwei, LI Chongyin. 21st century maritime silk road:big data construction of new marine resources:wave energy as a case study[J]. Ocean development and management, 2017, 34(12):61-65.
[58] 郑崇伟, 陈璇, 孙威. 加快建设"海上丝路"学科体系[N]. 中国海洋报, 2017-05-17(A2).ZHENG Chongwei, CHEN Xuan, SUN Wei. Accelerate the development of a disciplinary system on the Maritime Silk Road[N]. China Ocean News, 2017-05-17(A2).

备注/Memo

备注/Memo:
收稿日期:2019-11-04。
基金项目:国际(地区)合作与交流项目(41520104008).
作者简介:郑崇伟,男,讲师,博士;李崇银,男,教授,博士生导师,中国科学院院士.
通讯作者:李崇银,E-mail:lcy@lasg.iap.ac.cn.
更新日期/Last Update: 2020-03-24