[1]谷金鑫,魏航,任飞飞,等.高能脉冲磁控溅射技术制备VO2薄膜研究进展[J].哈尔滨工程大学学报,2020,41(2):219-226.[doi:10.11990/jheu.201911016]
 GU Jinxin,WEI Hang,REN Feifei,et al.Recent progress on the preparation of VO2 thin films by high-power impulse magnetron sputtering technology[J].hebgcdxxb,2020,41(2):219-226.[doi:10.11990/jheu.201911016]
点击复制

高能脉冲磁控溅射技术制备VO2薄膜研究进展(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
219-226
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Recent progress on the preparation of VO2 thin films by high-power impulse magnetron sputtering technology
作者:
谷金鑫1 魏航2 任飞飞2 李龙2 范青潽2 赵九蓬1 豆书亮2 李垚2
1. 哈尔滨工业大学 化工与化学学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工业大学 复合材料与结构研究所, 黑龙江 哈尔滨 150001
Author(s):
GU Jinxin1 WEI Hang2 REN Feifei2 LI Long2 FAN Qingpu2 ZHAO Jiupeng1 DOU Shuliang2 LI Yao2
1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
关键词:
二氧化钒热致变色透过光谱相变特性高能脉冲磁控溅射放电特性沉积温度
分类号:
TB381
DOI:
10.11990/jheu.201911016
文献标志码:
A
摘要:
高能脉冲磁控溅射(HiPIMS)技术具有低占空比、低频率、高峰值功率密度、高溅射等离子体密度等特点,能够在高峰值功率下进行薄膜沉积,从而提高薄膜的沉积质量。将高能脉冲磁控溅射技术用于二氧化钒(VO2)薄膜的沉积,能够降低其制备温度,提高致密度。本文介绍了高能脉冲磁控溅射技术的特点,阐述了高能脉冲磁控溅射技术制备VO2热致变色材料的研究现状,最后总结了利用高能脉冲磁控溅射技术制备VO2薄膜的优势以及存在的问题并对其应用进行展望。

参考文献/References:

[1] FORTIER J P, BALOUKAS B, ZABEIDA O, et al. Thermochromic VO2 thin films deposited by HiPIMS[J]. Solar energy materials and solar cells, 2014, 125:291-296.
[2] 左潇, 孙丽丽, 汪爱英, 等. 高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J]. 表面技术, 2019, 48(9):53-63.ZUO Xiao, SUN Lili, WANG Aiying, et al. Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J]. Surface technology, 2019, 48(9):53-63.
[3] 李春伟, 田修波, 宋炜昱, 等. 工作参数对磁场增强高功率脉冲磁控溅射放电特性的影响[J]. 真空科学与技术学报, 2018, 38(4):264-271.LI Chunwei, TIAN Xiubo, SONG Weiyu, et al. Effect of synthesis conditions on discharge behavior of magnetic field enhanced high power impulse magnetron sputtering[J]. Chinese journal of vacuum science and technology, 2018, 38(4):264-271.
[4] OLEJNÍ?EK J, HUBI?KA Z, KMENT ?, et al. Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J]. Surface and coatings technology, 2013, 232:376-383.
[5] ZHAO Xiaoli, JIN Jie, CHENG J C, et al. Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering[J]. Thin solid films, 2014, 570:404-411.
[6] ZUBKINS M, ARSLAN H, BIKSE L, et al. High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere:the study of sputtering process and AZO films[J]. Surface and coatings technology, 2019, 369:156-164.
[7] WANG Lei, JIN Jie, ZHU Chengke, et al. Effects of HiPIMS pulse-length on plasma discharge and on the properties of WC-DLC coatings[J]. Applied surface science, 2019, 487:526-538.
[8] LOQUAI S, BALOUKAS B, ZABEIDA O, et al. HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J]. Solar energy materials and solar cells, 2016, 155:60-69.
[9] KOLENATY D, HOUSKA J, VLCEK J. Improved performance of thermochromic VO2/SiO2 coatings prepared by low-temperature pulsed reactive magnetron sputtering:prediction and experimental verification[J]. Journal of alloys and compounds, 2018, 767:46-51.
[10] MORIN F J. Oxides which show a metal-to-insulator transition at the Neel temperature[J]. Physical review letters, 1959, 3(1):34-36.
[11] DOU Shuliang, ZHANG Weiyan, WANG Yuemin, et al. A facile method for the preparation of w-doped VO2 films with lowered phase transition temperature, narrowed hysteresis loops and excellent cycle stability[J]. Materials chemistry and physics, 2018, 215:91-98.
[12] DOU Shuliang, WANG Yi, ZHANG Xiang, et al. Facile preparation of double-sided VO2 (M) films with micro-structure and enhanced thermochromic performances[J]. Solar energy materials and solar cells, 2017, 160:164-173.
[13] DOU Shuliang, ZHANG Weiyan, WANG Yuemin, et al. The influence of temperature on preparing tungsten doped vanadium dioxide films by sol-gel method[J]. Materials research express, 2018, 6(1):016408.
[14] CAVALLERI A, TÓTh C, SIDERS C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition[J]. Physical review letters, 2001, 87(23):237401.
[15] SUN Kai, RIEDEL C A, URBANI A, et al. VO2 thermochromic metamaterial-based smart optical solar reflector[J]. ACS photonics, 2018, 5(6):2280-2286.
[16] SARAKINOS K, ALAMI J, KONSTANTINIDIS S. High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J]. Surface and coatings technology, 2010, 204(11):1661-1684.
[17] LOQUAI S, BALOUKAS B, KLEMBERG-SAPIEHA J E, et al. HiPIMS-deposited thermochromic VO2 films with high environmental stability[J]. Solar energy materials and solar cells, 2017, 160:217-224.
[18] ZHANG Haibao, CHERNG J S, CHEN Qiang. Recent progress on high power impulse magnetron sputtering (HiPIMS):the challenges and applications in fabricating VO2 thin film[J]. AIP advances, 2019, 9(3):035242.
[19] LUNDIN D, SARAKINOS K. An introduction to thin film processing using high-power impulse magnetron sputtering[J]. Journal of materials research, 2012, 27(5):780-792.
[20] EHIASARIAN A P. High-power impulse magnetron sputtering and its applications[J]. Pure and applied chemistry, 2010, 82(6):1247-1258.
[21] 艾猛, 李刘合, 韩明月, 等. 高功率脉冲磁控溅射等离子体放电特性研究现状[J]. 表面技术, 2018, 47(9):176-186.AI Meng, LI Liuhe, HAN Mingyue, et al. Discharge characteristics of plasma made by high power pulse magnetron sputtering[J]. Surface technology, 2018, 47(9):176-186.
[22] BRÄUER G, SZYSZKA B, VERGÖHL M, et al. Magnetron sputtering-milestones of 30 years[J]. Vacuum, 2010, 84(12):1354-1359.
[23] KOUZNETSOV V, MACÁK K, SCHNEIDER J M, et al. A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surface and coatings technology, 1999, 122(2/3):290-293.
[24] BARKER P M, KONSTANTINIDIS S, LEWIN E, et al. An investigation of c-HiPIMS discharges during titanium deposition[J]. Surface and coatings technology, 2014, 258:631-638.
[25] LIN Tiegui, WANG Langping, WANG Xiaofeng, et al. Influence of bias voltage on microstructure and phase transition properties of VO2 thin film synthesized by HiPIMS[J]. Surface and coatings technology, 2016, 305:110-115.
[26] AIJAZ A, JI Yuxia, MONTERO J, et al. Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J]. Solar energy materials and solar cells, 2016, 149:137-144.
[27] YUAN Xun, ZHANG Yubo, ABTEW T A, et al. VO2:orbital competition, magnetism, and phase stability[J]. Physical review B, 2012, 86(23):235103.
[28] GAO Yanfeng, LUO Hongjie, ZHANG Zongtao, et al. Nanoceramic VO2 thermochromic smart glass:a review on progress in solution processing[J]. Nano energy, 2012, 1(2):221-246.
[29] 罗明海, 徐马记, 黄其伟, 等. VO2金属-绝缘体相变机理的研究进展[J]. 物理学报, 2016, 65(4):047201.LUO Minghai, XU Maji, HUANG Qiwei, et al. Research progress of metal-insulator phase transition mechanism in VO2[J]. Acta physica sinica, 2016, 65(4):047201.
[30] 豆书亮. 溶胶-凝胶法制备二氧化钒薄膜及其光谱性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014.DOU Shuliang, Preparation and optical performance of vanadium dioxide by sol-gel method[D]. Harbin:Harbin Institute of Technology, 2014.
[31] KIM H T, LEE Y W, KIM B J, et al. Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition:coherent phonon analysis[J]. Physical review letters, 2006, 97(26):266401.
[32] KIM S, KIM K, KANG C J, et al. Correlation assisted phonon softenings and the mott-peierls transition in VO2[J]. arXiv:1207.1770, 2012.
[33] AETUKURI N B, GRAY A X, DROUARD M, et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy[J]. Nature physics, 2013, 9(10):661-666.
[34] 林铁贵. VO2薄膜的HiPIMS制备工艺与相变温度调控机理研究[D]. 哈尔滨:哈尔滨工业大学, 2017.LIN Tiegui. Study on HIPIMS preparation technology and phase transition temperature adjusting mechanism of VO2 film[D]. Harbin:Harbin Institute of Technology, 2017.
[35] VL?EK J, KOLENATÝ D, HOU?KA J, et al. Controlled reactive HiPIMS-effective technique for low-temperature (300℃) synthesis of VO2 films with semiconductor-to-metal transition[J]. Journal of physics D:applied physics, 2017, 50(38):38LT01.
[36] HOU?KA J, KOLENATÝ D, REZEK J, et al. Characterization of thermochromic VO2 (prepared at 250℃) in a wide temperature range by spectroscopic ellipsometry[J]. Applied surface science, 2017, 421:529-534.
[37] LIN Tiegui, WANG Langping, WANG Xiaofeng, et al. Influence of bias voltage on microstructure and phase transition properties of VO2 thin film synthesized by HiPIMS[J]. Surface and coatings technology, 2016, 305:110-115.
[38] LIN Tiegui, ZHANG Yufen, ZHENG Decong. The ultrathin VO2(M) film with ultrahigh visible transmittance synthesized on the quartz glass substrate by HiPIMS[J]. Vacuum, 2018, 156:449-455.
[39] MURAOKA Y, HIROI Z. Metal-insulator transition of VO2 thin films grown on TiO2(001) and (110) substrates[J]. Applied physics letters, 2002, 80(4):583-585.
[40] MLYUKA N R, NIKLASSON G A, GRANQVIST C G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance[J]. Solar energy materials and solar cells, 2009, 93(9):1685-1687.
[41] JUAN Pichun, LIN K C, LIN CHENGLI, et al. Low thermal budget annealing for thermochromic VO2 thin films prepared by high power impulse magnetron sputtering[J]. Thin solid films, 2019, 687:137443.
[42] ZONG Haitao, GENG Chenchen, ZHANG Cong, et al. Tuning the electrical and optical properties of ZrxOy/VO2 thin films by controlling the stoichiometry of ZrxOy buffer layer[J]. Applied surface science, 2019, 487:138-145.
[43] CHANG Tianci, CAO Xun, DEDON L R, et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano energy, 2018, 44:256-264.
[44] HOUSKA J, KOLENATY D, VLCEK J, et al. Significant improvement of the performance of ZrO2/V1-xWxO2/ZrO2 thermochromic coatings by utilizing a second-order interference[J]. Solar energy materials and solar cells, 2019, 191:365-371.

备注/Memo

备注/Memo:
收稿日期:2019-11-07。
基金项目:国家自然科学基金项目(51572058,51902073);中央高校基本科研业务费专项基金(HIT.NSRIF.2020019);装备发展部领域基金(6140922010901);中国博士后科学基金项目(2019M661273);黑龙江省博士后科学基金(LBH-Z19159).
作者简介:谷金鑫,女,博士研究生;豆书亮,男,师资博士后;李垚,男,教授,博士生导师,长江学者特聘教授.
通讯作者:豆书亮,E-mail:dousl@hit.edu.cn.
更新日期/Last Update: 2020-03-24