[1]陈熙,朱仁传,顾孟潇,等.基于质量源法的全垫升气垫船兴波模拟研究[J].哈尔滨工程大学学报,2021,42(2):166-171.[doi:10.11990/jheu.201911026]
 CHEN Xi,ZHU Renchuan,GU Mengxiao,et al.Wave-making simulation of air-cushion vehicle based on mass source method[J].Journal of Harbin Engineering University,2021,42(2):166-171.[doi:10.11990/jheu.201911026]
点击复制

基于质量源法的全垫升气垫船兴波模拟研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期数:
2021年2期
页码:
166-171
栏目:
出版日期:
2021-02-05

文章信息/Info

Title:
Wave-making simulation of air-cushion vehicle based on mass source method
作者:
陈熙1 朱仁传1 顾孟潇1 高嵩2
1. 上海交通大学 海洋工程国家重点实验室, 上海 200240;
2 上海船舶及海洋工程设计研究院, 上海 200011
Author(s):
CHEN Xi1 ZHU Renchuan1 GU Mengxiao1 GAO Song2
1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Marine and Shipbuilding Design Institute of China, Shanghai 200011, China
关键词:
气垫船兴波阻力质量源计算流体力学临界速度兴波波形浅水效应阻力峰
分类号:
U661.31
DOI:
10.11990/jheu.201911026
文献标志码:
A
摘要:
针对全垫升气垫船兴波问题,本文通过简化气室,采用质量源法模拟风机供气,在计算流体力学软件平台上实现了气垫兴波模拟计算。模拟中质量源法能够形成稳定的气垫,兴波波形合理,对内水面波形积分得到兴波阻力,能够准确给出速度变化过程中2次阻力峰值,与相关实验和文献结果比较,吻合良好。此外运用该方法研究了浅水中气垫船的兴波阻力变化情况,其第2个阻力峰的位置位于临界速度处。研究表明:该方法简单稳定,是气垫船兴波及阻力计算的有效手段。

参考文献/References:

[1] 马涛, 邬成杰. 气垫船总体性能与围裙气垫系统流体动力设计[M]. 北京:国防工业出版社, 2012.MA Tao, WU Chengjie. Hovorcraft performance and skirt-cushion system dynamics design[M]. Beijing:National Defense Industry Press, 2012.
[2] 曹林冲, 唐文勇, 张宗科, 等. 基于向量式有限元的气垫船围裙张力计算方法[J]. 中国造船, 2017, 58(2):89-96.CAO Linchong, TANG Wenyong, ZHANG Zongke, et al. Calculation of skirt tension for air cushion vehicle based on vector form intrinsic finite element[J]. Shipbuilding of China, 2017, 58(2):89-96.
[3] 冀楠. 全垫升气垫船运动特性研究[D]. 哈尔滨:哈尔滨工程大学, 2014.JI Nan. Research on motion characteristics of air cushion vehicle[D]. Harbin:Harbin Engineering University, 2014.
[4] NEWMAN J N, POOLE F A P. The wave resistance of a moving pressure distribution in a canal. RNC-TMB-648(Rev. 3-58)[R]. David Taylor Model Basin, 1962.
[5] BARRATT M J. The wave drag of a hovercraft[J]. Journal of fluid mechanics, 1965, 22:39-47.
[6] DOCTORS L J, SHARMA S D. The wave resistance of air cushion vehicle in accelerated motion[J]. Journal of ship research, 1972, 16(4):248-260.
[7] LAZAUSKAS L V. Hydrodynamics of advanced high-speed sealift vessels[D]. Adelaide, Australia:University of Adelaide, 2005.
[8] MILEWSKI B, CONNELL B, WILSON J, et al. Dynamics of air cushion vehicles operating in a seaway[C]//Proceedings of the 9th International Conference on Numerical Ship Hydrodynamics. Ann Arbor, Michigan, 2007.
[9] NIKSERESHT A H, ALISHAHI M M, EMDAD H. Complete flow field computation around an ACV (air-cushion vehicle) using 3D VOF with Lagrangian propagation in computational domain[J]. Computers & structures, 2008, 86(7/8):627-641.
[10] BHUSHAN S, STERN F, DOCTORS L J. Verification and validation of URANS wave resistance for air cushion vehicles, and comparison with linear theory[J]. Journal of ship research, 2011, 55(4):249-267.
[11] MAKI K J, BROGLIA R, DOCTORS L J, et al. Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface[J]. Ocean engineering, 2012, 39:62-71.
[12] 刘宁, 王晓强, 任慧龙, 等. 全垫升气垫船在波浪中运动的非线性理论研究[J]. 华中科技大学学报(自然科学版), 2014, 42(4):91-95.LIU Ning, WANG Xiaoqiang, REN Huilong, et al. Nonlinear theory research on motion response of air cushion vehicle in waves[J]. Journal of Huazhong University of Science and Technology (nature science), 2014, 42(4):91-95.
[13] 杨云涛, 朱仁传, 蒋银, 等. 三维无反射数值波浪水池及波浪与结构物相互作用的模拟[J]. 上海交通大学学报, 2018, 52(3):253-260.YANG Yuntao, ZHU Renchuan, JIANG Yin, et al. Simulation of 3-D viscous non-reflection numerical wave tank and the interactions of waves and structures[J]. Journal of Shanghai JiaoTong University, 2018, 52(3):253-260.
[14] BHUSHAN S, MOUSAVIRAAD M, STERN F. Assessment of URANS surface effect ship models for calm water and head waves[J]. Applied ocean research, 2017, 67:248-262.
[15] EVEREST J T, HOCBEN N. Research on Hovercraft over calm water[J]. Trans royal institution of naval architects, 1967, 111(3):343-365.

相似文献/References:

[1]王中,卢晓平,王玮.三体船兴波阻力计算的自由面网格快速生成[J].哈尔滨工程大学学报,2010,(04):0.
[2]刘振业,刘伟,付明玉,等.神经网络自抗扰全垫升气垫船航迹控制[J].哈尔滨工程大学学报,2012,(03):283.[doi:10.3969/j.issn.1006-7043.201103044]
 LIU Zhenye,LIU Wei,FU Mingyu,et al.Trace-Keeping of an Air Cushion Vehicle Based on an Auto Disturbance Rejection Controller with a Recurrent Networks Model[J].Journal of Harbin Engineering University,2012,(2):283.[doi:10.3969/j.issn.1006-7043.201103044]
[3]卢晓平,江杰,王鹏.大型水面舰船尾楔减阻设计遗传算法[J].哈尔滨工程大学学报,2012,(10):1211.[doi:10.3969/j.issn.1006-7043.201203040]
 LU Xiaoping,JIANG Jie,WANG Peng.Large surface combat ship stern wedge optimization design for the resistance reduction based on the genetic algorithm[J].Journal of Harbin Engineering University,2012,(2):1211.[doi:10.3969/j.issn.1006-7043.201203040]
[4]张宝吉.船体和螺旋桨相互干涉时的兴波阻力计算[J].哈尔滨工程大学学报,2012,(10):1228.[doi:10.3969/j.issn.1006-7043.201111001]
 ZHANG Baoji.Numerical calculation of wave-making resistance considering the interaction between hull and propeller[J].Journal of Harbin Engineering University,2012,(2):1228.[doi:10.3969/j.issn.1006-7043.201111001]
[5]龚家烨,李云波,常赫斌.小水线面双体船阻力及航态预报方法[J].哈尔滨工程大学学报,2015,(11):1427.[doi:10.11990/jheu.201410003]
 GONG Jiaye,LI Yunbo,CHANG Hebin.Prediction method for resistance and hull gesture of a small waterplane area twin hull[J].Journal of Harbin Engineering University,2015,(2):1427.[doi:10.11990/jheu.201410003]
[6]张恒,刘祖源,冯佰威,等.改进的交叉熵法在船型优化中的应用[J].哈尔滨工程大学学报,2018,39(02):261.[doi:10.11990/jheu.201610057]
 ZHANG Heng,LIU Zuyuan,FENG Baiwei,et al.Application of an improved cross-entropy method in hull form optimization[J].Journal of Harbin Engineering University,2018,39(2):261.[doi:10.11990/jheu.201610057]
[7]陈纪康,段文洋,李建东,等.泰勒展开边界元法的船舶兴波阻力计算[J].哈尔滨工程大学学报,2019,40(05):872.[doi:10.11990/jheu.201809025]
 CHEN Jikang,DUAN Wenyang,LI Jiandong,et al.Numerical calculation on wave-making resistance based on Taylor expansion boundary element method[J].Journal of Harbin Engineering University,2019,40(2):872.[doi:10.11990/jheu.201809025]

备注/Memo

备注/Memo:
收稿日期:2019-11-11。
作者简介:陈熙,男,硕士研究生;朱仁传,男,教授,博士生导师.
通讯作者:朱仁传,E-mail:renchuan@sjtu.edu.com.
更新日期/Last Update: 2021-02-27